摘要 实现实用量子计算的一个主要障碍是实现可扩展且稳健的高保真纠缠门。为此,量子控制已成为一种必不可少的工具,因为它可以使纠缠相互作用对噪声源具有弹性。然而,考虑到与稳健纠缠相关的工作范围,可能很难为特定需求确定合适的量子控制技术。为此,我们尝试通过提供非详尽的摘要和批判性分析来整合文献。量子控制方法分为两类:将稳健性扩展到 (i) 自旋或 (ii) 运动退相干的方案。我们选择重点研究使用微波和静磁场梯度扩展 σ x ⊗ σ x Mølmer–Sørensen 相互作用。然而,这里讨论的一些技术可能与其他捕获离子架构或物理量子比特实现相关。最后,我们通过结合本文提出的几种量子控制方法,通过实验实现了同时具有对自旋和运动退相干的鲁棒性的概念验证相互作用。
纠缠门是量子计算机的重要组成部分。然而,以可扩展的方式生成高保真门仍然是所有量子信息处理平台的主要挑战。因此,提高这些门的保真度和稳健性一直是近年来的研究重点。在捕获离子量子计算机中,纠缠门是通过驱动离子链的正常运动模式来执行的,从而产生自旋相关力。尽管在提高这些门的稳健性和模块化方面取得了重大进展,但它们仍然对驱动场强度的噪声很敏感。在这里,我们用自旋相关压缩补充了传统的自旋相关位移,这创造了一种新的相互作用,使门能够对驱动场幅度的偏差具有鲁棒性。我们求解一般的汉密尔顿量并分析设计其频谱。我们还赋予我们的门其他更传统的稳健性属性,使其能够抵御许多实际的噪声源和不准确性。
图1-1:依赖性DNA连接酶结构域结构。对齐结构域的对齐。与DNA结合结构域(DBD,RED)一起突出显示了构成核心催化域的腺苷域和寡核苷酸结合(ob折,黄色)结构域。列出了每种蛋白质列出的活跃位点的位置。chvlig没有大的DBD,而是在OB折内包含一个小的20个氨基酸“闩锁”(闩锁,蓝色),可以帮助DNA结合。也为Lig3独有的锌指域(Znf,橙色)。n-和c末端蛋白质相互作用基序和细胞定位信号未显示。
4 集成离子阱系统 90 4.1 真空室子系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.5 成像子系统 . . . . . . . . . . . . . . 108 4.6 控制子系统 . . . . . . . . . . . . . . 111 4.6.1 主控制子系统 . . . . . . . . . . . . . . 112 4.6.2 相干射频控制子系统 . . . . . . . . . . . . . . 113
纠缠量子门是量子信息处理的核心元素。经过几十年的实验,这种门已经在几种物理系统中成功实现,包括囚禁离子[1-3]、超导电路[4]、量子点[5]和NV中心[6]。经过一段时间的原理验证实验,该领域现在需要具有极高保真度的快速量子门,以便下一步实现性能超越传统设备的硬件。最先进的平台包括囚禁离子[7,8]。由于离子因库仑排斥而在空间上分离,因此定义量子比特的电子自由度之间没有明显的直接相互作用,需要设计通过集体运动模式介导的有效相互作用才能实现纠缠门。该机制涉及运动状态的改变[9],这对于门的实现绝对必要。但同样重要的是,电子模式和运动模式在门时间变得不相关,否则将导致不相干的门操作。有各种各样用电磁场驱动离子的方案 [ 10 – 13 ],这些方案在低温下在弱离子运动相互作用的 Lamb-Dicke 区域中实现这一点,运动模式也是如此。对于目前在 Lamb-Dicke 区域中采用的大多数纠缠门,相对简单的驱动方案会导致门操作很大程度上独立于初始运动状态。尽管如此,局限于 Lamb-Dicke 区域也带来了一些挑战。保持离子运动接近量子力学基态的必要性对冷却提出了严格的要求;在冷却循环之间只能执行有限数量的门,这减少了在相干时间内可以执行的门数量。由于相互作用较弱,实现快速门需要强激光驱动,从而产生诸如交流斯塔克位移和非共振激发等不利影响,从而降低门保真度 [14]。即使在完全冷却的运动和弱相互作用下,
非参数学习能够通过从一组新输入数据与所有样本之间的相似性中提取信息来做出可靠的预测。这里我们指出了一种非参数学习的量子范式,它提供了样本大小的指数级加速。通过将数据编码到量子特征空间中,数据之间的相似性被定义为量子态的内积。引入量子训练态来叠加样本的所有数据,在其二分纠缠谱中编码用于学习的相关信息。我们证明了使用量子矩阵工具箱可以通过纠缠谱变换获得用于预测的训练状态。我们进一步制定了一个可行的协议来实现捕获离子的量子非参数学习,并展示了量子叠加对机器学习的强大作用。
1 美国国家标准与技术研究所 (NIST),美国马里兰州盖瑟斯堡 20899 2 特拉华大学,美国特拉华州纽瓦克 19716 3 克莱姆森大学,美国南卡罗来纳州克莱姆森 29634 4 马里兰大学,美国马里兰州帕克分校 20742 将离子限制在离子阱中有许多有趣的应用,包括精密光谱学、量子计量学以及强耦合单组分等离子体中的集体行为。在大多数情况下,单电荷离子或几次电离的物质是在离子阱内原位产生的。但是,某些应用需要专用的外部离子源。例如,将离子束注入线性射频 (RF) 阱中,形成以空间电荷为主的非中性等离子体,用于模拟强带电粒子束传播的实验,例如重离子聚变反应堆、散裂中子源和高能物理中的粒子束。强空间电荷效应使高电荷离子 (HCI) 的隔离更加复杂,该效应与电荷状态的平方成正比。在这项工作中,我们报告了在双曲线 RF 阱中捕获 ~500 Ne 10+ 离子。高电荷离子从 NIST 的电子束离子源/阱 (EBIS/T) 中提取,随后由 7 米长的光束线引导至离子阱装置;嵌套在静电光束线光学器件中的电荷质量分析仪用于选择要在 RF 阱中重新捕获的单个电荷状态 (Ne 10+)。我们讨论了实验优化,并将结果与计算机模拟进行了比较。实验捕获效率达到了 ~20%,在双曲线 RF 阱中捕获了 ~500 个 Ne 10+ 离子,与单元 Penning 阱中达到的捕获效率相当 [1]。RF 阱中可用的更大光学通道有利于改进光谱实验。由于 RF 驱动的微运动加热并且没有任何冷却机制,观察到的存储在 RF 阱中的 Ne 10+ 离子的存储寿命为 69 毫秒,短于单元 Penning 阱中相应的存储寿命。尽管如此,这对于各种光谱实验都很有用,包括许多电荷状态的原子状态寿命测量。探索了增加捕获离子数量和存储寿命的可能改进方法。参考文献
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。
引言目前,光刻是多种半导体器件和集成电路一般生产周期中的主要工艺之一。重氮喹诺酮酚醛 (DQN) 光刻胶广泛用作亚微米和纳米光刻的掩模 [1–4]。现代电子学中形成掺杂区的主要方法之一是离子注入 (II)。该方法可以精确控制掺杂剂浓度,且具有工艺多功能性和灵活性的特点。DQN 光刻胶与紫外线、X 射线和可见辐射的相互作用已得到充分详细研究,而离子辐照引起的过程仍然知之甚少,尽管它们会显著影响所创建器件的质量 [4–6]。在聚合物的 II 期间,辐射诱导过程先前已被证明会发生在离子路径区域内及其外部 [5, 7–9]。例如,在 [5] 中发现了 DQN 抗蚀剂膜在锑离子注入层后面的辐射硬化。然而,导致 II 层后面的 DQN 抗蚀剂的物理机械性能发生变化的辐射诱导过程的机制尚未确定。对于薄膜研究,受抑全内反射 (TIR) 的 FTIR 光谱可以定性和定量地获取固体中复杂有机化合物及其混合物的成分和结构
电容,其中C G是栅极电容,C J是连接电容,如图1。对于电荷零件,约瑟夫森能量与充电能量E J / E C的典型比率约为1,因此充电能量主导。特征力E M对过渡能E 01的响应比(E 1-e 0在n g = 0。5)在图中绘制了量子的2(a)。对于不同的E J / E C(5、10和50)的其他比率E M / E 01也在图1和图2中绘制。2(b) - 2(d)。由于ˆφ和ˆ n满足换向关系ˆφ,ˆ n = i,电荷数是一个良好的量子数,并且相相对较大。Josephson连接通常用DC平方(Su-percoductucting量子干扰装置)代替,该连接可以用作可调的Josephson交界处,从而增加了操纵电荷Qubit的功能。在所谓的电荷基础上,[4] ˆ n =σn n | n⟩⟨n |和cosφ= 1 /2·σN(|n⟩⟨n + 1 | + | n + 1⟩⟨n |),可以将汉密尔顿人写成< / div>