- 我们主要关注政府作为 AI 实施者和推动者的角色,以实现影响解决方案。该项目还旨在捕捉私营部门主导的举措以及公共、私营部门和第三部门之间的其他合作举措。- 我们旨在对可以利用 AI 在埃塞俄比亚产生影响的一系列用例进行分析。我们将确定跨行业的最多六个用例,这些用例在短期和长期内都具有最有希望的机会。我们旨在调查不同成熟阶段的机会,包括已经部署解决方案的用例,以及更多新兴机会领域。选择标准有待确定,但可能包括行业数据的可用性和质量、数据收集和分析硬件和软件的可用性和可负担性、技能以及融资和商业模式的可及性。
确认怀疑的一个有效方法是对学生的作业内容进行测验。要求他们解释复杂的观点、论据背后的原因或他们使用的特定单词或短语的含义。如果他们无法提供令人满意的答案或对自己的作业感到困惑,这可能表明他们不是自己写的。但请注意,如果学生感到紧张,或者他们完成作业已有一段时间,不再记得具体内容,他们也可能会遇到困难。
摘要:在不同投影场景下,气候模拟的时空分辨率的复杂性产生了多种气候模式。本文通过一种无监督的深度学习技术提出了一种新的数据驱动的气候分类工作,该技术可以在尺寸上降低大量时空数值气候投影数据中的大量紧凑表示。我们旨在确定捕获多个气候变量的不同区域以及在不同气候变化方案下的未来变化。我们的方法利用卷积自动编码器与K-均值聚类(标准自动编码器)和在线聚类相结合,基于sindhorn - Knopp算法(群集自动编码器),整个Conterminous美国(CONUS)(CONUS)(CONUS)捕获来自数据驱动的气候型号的独特气候式的goldement offeration Androm intery Demplyicals todlement todlement todlemant througation dynerical offer -Gromys toym intery dynerical demancortial dynerical ofderational dynerical officolt offer。 (GFDL-ESM2G)。开发的方法在多个变暖方案下以0.125 8的0.125 8将70年的GFDL-ESM2G仿真压缩为较低维空间的空间分辨率为660000倍,然后在150年的GFDL-ESM2G仿真数据中测试了150年。结果表明,五个气候群体捕获了与人类专家定义的已知气候类别相匹配的物理合理和空间稳定的气候效果。结果还表明,与使用标准自动编码器相比,使用群集自动编码器可以将聚类的计算时间限制为9.2倍。我们五个独特的气候模式是由深度学习引起的 - 基于较低维空间的聚类,从而使我们能够在整个综合美国立即提供有关水力气学及其空间异质性的见解,而无需下载大量的大气候数据集。
本研究的主要目的是从 Qua 河沉积物中分离和量化柴油利用细菌,并确定它们对不同浓度柴油的耐受水平。使用标准微生物技术收集和处理样品。然后使用气相转移法进行筛选测试,并在室温(28±2 0 C)下孵育。样品(3)记录的柴油利用细菌数量最高,为 9.7 x 10 3 CFU/g,而样品一(1)记录的最低细菌数量为 6.0 x 10 3 CFU/g。假单胞菌属、藤黄微球菌和芽孢杆菌属是已鉴定的柴油利用细菌分离物。在矿物盐肉汤中对这些分离株对 1%、3%、5% 和 7% 柴油的耐受性进行了测试,通过光密度(OD 600nm)证明,藤黄微球菌对 1%(0.279)、3%(0.253)和 5%(0.154)柴油的生长(OD 600nm)低于假单胞菌属(0.685)、3%(0.483)和 5%(0.466)以及芽孢杆菌属(0.509)、3%(0.452)和 5%(0.390),但在 7%(0.1)时的生长(OD 600nm)略高于假单胞菌属(0.095)和藤黄微球菌(0.093)。在 5% 显著性水平下的方差分析证明,柴油浓度对这些分离株的生长(OD 600nm)存在显著差异。这些结果突出了 Qua 河作为石油生物修复细菌的潜在来源。关键词:柴油利用细菌、沉积物、碳氢化合物降解、细菌鉴定、生物修复介绍沉积物是水生生态系统的主要组成部分,由永久水体叠加而成,无论是海洋、峡湾、湖泊还是水库,通常含有外来和本土有机物,能够刺激水生残留物产生有利反应(Jian 等,2022 年)。与水体的液体部分相比,沉积物区域以生物活动和微生物多样性为主。沉积物与土壤有一些共同的特性,但由于各种原因而与土壤环境不同,其中许多原因有利于栖息在沉积物中的微生物种群。柴油是最复杂的混合物之一,由饱和烃和芳香烃组成。通讯作者电子邮件:ubahchioma3@gmail.com
图 1. 人类神经发生过程示意图。图 2. 受损小肠可通过诱导复苏干细胞再生。图 3. F3 被确定为人类脑类器官中潜在的复苏干细胞样细胞标记。图 4. FACS 制备示意图。图 5. FACS 门控。图 6. 与人类胚胎细胞系 H1 和 H9 相比,神经祖细胞表现出更高的 F3 表达水平。图 7. 评估不同年龄 CO 中 revSC 和 RGC 标记表达水平。图 8. 评估辐射处理的脑类器官中 revSC 和 RGC 标记表达水平。图 9. 通过 FACS 确认成功分离 F3 表达细胞。图 10. FACS 评估 H9 和 SC16 CO 中的亚群比例
图1。发育过程中人类神经发生的示意图。图2。受损的小肠可以通过诱导复兴干细胞而再生。图3。f3被鉴定为人脑器官中潜在的复兴干细胞样细胞标记。图4。FACS准备的示意图。图5。FACS门控。 图6。 与人类胚胎细胞系H1和H9相比,神经祖细胞表现出更高水平的F3表达。 图7。 在不同年龄的COS中对REVSC和RGC标记表达水平的评估。 图8。 评估辐射治疗的大脑器官中REVSC和RGC标记表达水平。 图9。 确认FACS成功隔离F3细胞。 图10。 FACS评估H9和SC16 COS 中的子群体比例FACS门控。图6。神经祖细胞表现出更高水平的F3表达。图7。在不同年龄的COS中对REVSC和RGC标记表达水平的评估。图8。评估辐射治疗的大脑器官中REVSC和RGC标记表达水平。图9。确认FACS成功隔离F3细胞。图10。FACS评估H9和SC16 COS
摘要:Bawean岛是位于爪哇岛北侧的后弧火山区火山活动的结果。bawean岛是由于地质结构在Meratus模式中由古近菜单构造线控制的。地幔撕裂导致了Bawean弧的形成。Kepuhlegundi温泉是Bawean Island上火山产品的组成部分。为了更详细地分析温泉的形成,我们进行了磁方法测量,并将数据与重力卫星和断层断裂密度(FFD)方法整合在一起。这三种方法用于确定温泉周围映射的地质结构的连续性。FFD方法可用于绘制温泉的弱区,这是由周围的谱系引起的。磁性和重力方法揭示了异常的对比,沿结构方向延伸到温泉。磁性和重力方法揭示了异常的对比,沿结构方向延伸到温泉。基于区域异常分析,频谱分析表明该结构位于15至80米的浅深度。每种方法中的图形显示在东北西北方向上的主要方向,这与Meratus结构模式的方向相对应。kepuhlegundi温泉,使热流体以含水层流经裂缝。
第二,场景练习反映了有关AWS设计和使用限制的广泛观点。共享了确保国际人道主义法(IHL)遵守国际人道主义法(IHL)的重要性和对IHL违规行为的责任的重要性,但这些假设中流动的局限性是广泛争议的,显着的分歧是目标,环境使用环境和某些数据过程方法。差异的关键来源源于不同的基本原理和关注,这些理由和关注者为参与者的观点提供了理解的意见,从不同的IHL阅读到植根于不同人权,道德,安全或其他政策优先级的更广泛价值观。然而,尽管更广泛的担忧,尤其是与伦理有关的问题,通常被用来绘制线条,但它们很少被深入解释。为了提出讨论,各州可以更详细地详细阐述其道德问题的性质,并探讨这些问题在政策讨论中应发挥的作用。
1. Politis M,Wu K,Molloy S,G Bain P,Chaudhuri KR,Piccini P. Parkinson疾病症状:患者的观点。MOV DISORD。 2010; 25(11):1646-1651。 doi:10.1002/MDS.23135 2.Kwon M,Lee JH。 帕金森氏病和相关运动障碍中的脑咽吞咽困难。 J MOV DISORD。 2019; 12(3):152-160。 doi:10.14802/jmd.19048 3.Cannon JR,Tapias V,Na HM,Honick AS,Drolet RE,Greenamyre JT。 帕金森氏病高度可再现的鱼酮模型。 神经元素。 2009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。 在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。 帕金森一家。 2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/6537072MOV DISORD。2010; 25(11):1646-1651。 doi:10.1002/MDS.23135 2.Kwon M,Lee JH。 帕金森氏病和相关运动障碍中的脑咽吞咽困难。 J MOV DISORD。 2019; 12(3):152-160。 doi:10.14802/jmd.19048 3.Cannon JR,Tapias V,Na HM,Honick AS,Drolet RE,Greenamyre JT。 帕金森氏病高度可再现的鱼酮模型。 神经元素。 2009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。 在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。 帕金森一家。 2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/65370722010; 25(11):1646-1651。 doi:10.1002/MDS.23135 2.Kwon M,Lee JH。帕金森氏病和相关运动障碍中的脑咽吞咽困难。J MOV DISORD。 2019; 12(3):152-160。 doi:10.14802/jmd.19048 3.Cannon JR,Tapias V,Na HM,Honick AS,Drolet RE,Greenamyre JT。 帕金森氏病高度可再现的鱼酮模型。 神经元素。 2009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。 在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。 帕金森一家。 2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/6537072J MOV DISORD。2019; 12(3):152-160。 doi:10.14802/jmd.19048 3.Cannon JR,Tapias V,Na HM,Honick AS,Drolet RE,Greenamyre JT。 帕金森氏病高度可再现的鱼酮模型。 神经元素。 2009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。 在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。 帕金森一家。 2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/65370722019; 12(3):152-160。 doi:10.14802/jmd.19048 3.Cannon JR,Tapias V,Na HM,Honick AS,Drolet RE,Greenamyre JT。帕金森氏病高度可再现的鱼酮模型。神经元素。2009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。 在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。 帕金森一家。 2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/65370722009; 34(2):279-290。 doi:10.1016/j.nbd.2009.01.016 4. GOULD FDH,GROSS A,German RZ,Richardson Jr。在帕金森氏病大鼠烤面包酮模型中进食的口咽功能障碍的证据。帕金森一家。2018; 2018:6537072。 发布2018年3月11日。DOI:10.1155/2018/65370722018; 2018:6537072。发布2018年3月11日。DOI:10.1155/2018/6537072