4。Ansaldo E,Slayden LC,Ching KL,Koch MA,Wolf NK,Plichta DR等。akkermansia粘膜粘膜在稳态期间诱导肠道适应性免疫反应。科学。2019; 364(6446):1179-1184。 5。 Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。 个体肠道共生体诱导RORγ +调节性T细胞的不同种群。 科学。 2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2019; 364(6446):1179-1184。5。Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。个体肠道共生体诱导RORγ +调节性T细胞的不同种群。科学。2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2015; 349(6251):993-997。6。Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。结肠共生微生物群对免疫系统的外围教育。自然。2011; 478(7368):250-254。7。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。肠道Th17细胞对共生细菌抗原的聚焦特异性。自然。2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2014; 510(7503):152-156。8。Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。自然。2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2018; 554(7692):373-377。9。Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。SCI免疫。2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2017; 2(13):EAAL5068。10。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。通过分段丝状细菌诱导肠道Th17细胞。单元格。2009; 139(3):485-498。 11。2009; 139(3):485-498。11。Bilate AM,Bousbaine D,Mesin L,Agudelo M,Leube J,Kratzert A等。来自克隆T细胞前体的调节和上皮内T细胞的组织特异性出现。SCI免疫。 2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。SCI免疫。2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 1(2):EAAF7471。12。Bilate Am,Lafaille JJ。在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。Annu Rev Immunol。2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2012; 30:733-758。13。页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。Immunol Rev.2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2013; 252(1):164-182。14。Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。科学。2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 352(6293):1581-1586。15。Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。nat免疫。2013; 14(3):271-280。2013; 14(3):271-280。
参考:1。vyvart。处方信息。美国Inc Argenx; 2022。 2。 Wolfe Gi和Al。 J Sci Neurol 2021; 430:118074。 doi:10.1016/j.j。 连接i,Herbst R.细胞 2019:8(7(7):671。 doi:10.3390/cell8 Howard JF Jr等。 神经病学 2019:92(23):: 2661-IN 2673。 10.1212/wnl。 DC Roopenian,Akiles S. Nat Rev Immunol。 2007; 7(9):715-725。 doi:10.1038/nri2155 6。 病房,do rj。 Sci Parmacol趋势。 2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-9美国Inc Argenx; 2022。2。Wolfe Gi和Al。J Sci Neurol2021; 430:118074。 doi:10.1016/j.j。连接i,Herbst R.细胞2019:8(7(7):671。 doi:10.3390/cell8 Howard JF Jr等。 神经病学 2019:92(23):: 2661-IN 2673。 10.1212/wnl。 DC Roopenian,Akiles S. Nat Rev Immunol。 2007; 7(9):715-725。 doi:10.1038/nri2155 6。 病房,do rj。 Sci Parmacol趋势。 2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92019:8(7(7):671。 doi:10.3390/cell8Howard JF Jr等。 神经病学 2019:92(23):: 2661-IN 2673。 10.1212/wnl。 DC Roopenian,Akiles S. Nat Rev Immunol。 2007; 7(9):715-725。 doi:10.1038/nri2155 6。 病房,do rj。 Sci Parmacol趋势。 2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-9Howard JF Jr等。神经病学2019:92(23):: 2661-IN 2673。 10.1212/wnl。 DC Roopenian,Akiles S. Nat Rev Immunol。 2007; 7(9):715-725。 doi:10.1038/nri2155 6。 病房,do rj。 Sci Parmacol趋势。 2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92019:92(23):: 2661-IN 2673。10.1212/wnl。DC Roopenian,Akiles S. Nat Rev Immunol。2007; 7(9):715-725。 doi:10.1038/nri2155 6。 病房,do rj。 Sci Parmacol趋势。 2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92007; 7(9):715-725。 doi:10.1038/nri2155 6。病房,do rj。Sci Parmacol趋势。2018; 39(10):892-9 doi:10.1016/j.tips。 ulricts pe和。 J Clin Invest 2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92018; 39(10):892-9 doi:10.1016/j.tips。ulricts pe和。J Clin Invest2018; 128(10):4372-4386。 doi:10.1172/jci97911 8。 r al。 治疗区。 2011; 7:151-160。 doi:2147/ndt.s8915 9。 behin a,激情R. J J neuromuscul 2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92018; 128(10):4372-4386。 doi:10.1172/jci97911 8。r al。治疗区。2011; 7:151-160。 doi:2147/ndt.s8915 9。behin a,激情R. J J neuromuscul2018; 5:265-2 doi:10,3233/jnd-170294 10。 mg和al。 J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-92018; 5:265-2 doi:10,3233/jnd-170294 10。mg和al。J Home Med 2014; 275:12-26。doi:10.1111/she.12163 11。 Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-9J Home Med2014; 275:12-26。doi:10.1111/she.12163 11。Howard JF Jr等。 Neurol Lance 2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-9Howard JF Jr等。Neurol Lance2021; 20:526-536。 doi:10.1016/s1474-4422(21)00159-9
[1] Anderson NM,Simon MC。肿瘤微环境。Curr Biol,2020,30:R921-5 [2] Mao X,Xu J,Wang W等。在肿瘤微环境中癌症相关的成纤维细胞和免疫细胞之间的串扰:新发现和未来的观点。mol Cancer,2021,20:131 [3] Lv B,Wang Y,Ma D等。免疫疗法:重塑肿瘤免疫微环境。前免疫,2022,13:844142 [4] Fu T,Dai LJ,Wu Sy等。免疫微环境的空间结构策划了肿瘤免疫和治疗反应。J Hematol Oncol,2021,14:98 [5] Matsumoto Ki,Mitchell JB,Krishna MC。基于MRI,EPRI和PET的癌症/肿瘤微环境的多模式功能成像。分子,2021,26:1614 [6] Li X,Wang R,Zhang Y等。癌症免疫疗法中肿瘤相关巨噬细胞的分子成像。the Adv Med Oncol,2022,14:17588359221076194 [7] Wang JJ,Lei KF,Han F.肿瘤微环境:各种癌症治疗的最新进展。Eur Rev Med Pharmacol Sci,2018,22:3855-64 [8] Kim Ee,Youn H,Kang KW。肿瘤免疫学成像。nucl med mol成像,2021,55:225-36 [9] liu r,hu y,liu t等。在骨肉癌肿瘤微环境中,免疫细胞浸润和免疫相关基因的特征。BMC癌症,2021,21:1345 [10] Yuki K,Cheng N,Nakano M等。肿瘤免疫学的器官模型。趋势Immunol,2020,41:652-64 [11] Li T,Fu J,Zeng Z等。timer2.0用于分析肿瘤浸润的免疫细胞。核酸Res,2020,48:W509-14 [12] Li Y,Hu X,Lin R等。单细胞景观揭示了活性细胞亚型及其在胃癌肿瘤微环境中的相互作用。Theranostics,2022,12:3818-33 [13] Davis-Marcisak EF,Deshpande A,Stein-O'Brien GL等。从长凳到床边:癌症免疫疗法的单细胞分析。癌细胞,2021,39:1062-80 [14] Seeeevassen L,Bessede E,Megraud F等。胃癌:癌变研究和新的治疗策略的进展。Int J Mol Sci,2021,22:3418
移植优于菲达斯素,用于治疗艰难梭菌感染。胃肠病学。2019; 156(5):1324。 46。 li ZC,Liu DH,Gu RC等。 OBESTISS代谢中的粪便微生物群移植:元分析和系统评价。 糖尿病临床实践。 2023; 202:110803。 47。 Quaranta G,Sanguinetti M,Masucci L.粪便菌群移植:一种治疗人类女性生殖道疾病的潜在工具。 前疫苗。 2019; 10:2653。 48。 Corrie L,Gulati M,Vishwas S等。 结合卷和粪便菌群移植的组合疗法:聚囊性卵巢综合征的潜在治疗。 MED假设。 2021; 154:110644。 49。 Shamasbi SG,Ghanbari-Homayi S,MirghafourvandM。对多囊性卵巢综合剂的女性激素和炎症指数的益生菌,益生元和益生菌的作者:系统性综述和荟萃分析。 EUR J NUTR。 2020; 59(2):433-450。 50。 Y,Wang Q,Li X等。 乳酸细菌减轻了多囊2019; 156(5):1324。46。li ZC,Liu DH,Gu RC等。OBESTISS代谢中的粪便微生物群移植:元分析和系统评价。糖尿病临床实践。2023; 202:110803。47。Quaranta G,Sanguinetti M,Masucci L.粪便菌群移植:一种治疗人类女性生殖道疾病的潜在工具。前疫苗。2019; 10:2653。 48。 Corrie L,Gulati M,Vishwas S等。 结合卷和粪便菌群移植的组合疗法:聚囊性卵巢综合征的潜在治疗。 MED假设。 2021; 154:110644。 49。 Shamasbi SG,Ghanbari-Homayi S,MirghafourvandM。对多囊性卵巢综合剂的女性激素和炎症指数的益生菌,益生元和益生菌的作者:系统性综述和荟萃分析。 EUR J NUTR。 2020; 59(2):433-450。 50。 Y,Wang Q,Li X等。 乳酸细菌减轻了多囊2019; 10:2653。48。Corrie L,Gulati M,Vishwas S等。结合卷和粪便菌群移植的组合疗法:聚囊性卵巢综合征的潜在治疗。MED假设。2021; 154:110644。49。Shamasbi SG,Ghanbari-Homayi S,MirghafourvandM。对多囊性卵巢综合剂的女性激素和炎症指数的益生菌,益生元和益生菌的作者:系统性综述和荟萃分析。EUR J NUTR。2020; 59(2):433-450。50。Y,Wang Q,Li X等。 乳酸细菌减轻了多囊Y,Wang Q,Li X等。乳酸细菌减轻了多囊
1。adbry [包插入]。新泽西州麦迪逊:Leo Pharma Inc.; 2022年1月。 2。 cibinqo [软件包插入]。 纽约,纽约:辉瑞实验室; 2023年2月。 3。 eucrisa [包装插入]。 纽约,纽约:辉瑞实验室; 2023年4月。 4。 opzelura [包装插入]。 威尔明顿,德:Incyte Corporation; 2023年1月。 5。 rinvoq [包插入]。 北芝加哥,伊利诺伊州:Abbvie Inc.; 2023年6月。 6。 Sidbury R,Davis DM,Cohen DE等。 针对特应性皮炎管理的护理指南:第3节。 通过光疗和全身性剂进行管理和治疗。 J Am Acad Dermatol。 2014; 71(2):327-49。 7。 Boguniewicz M,Alexis AF,Beck LA等。 对中度至重度特应性皮炎的管理专家观点:一种解决当前和新兴疗法的多学科共识。 J ALLERGY CLIN IMMUNOL实践。 2017; 5(6):1519-1531。 8。 Wollenberg A,Christen-ZächS,Taieb A等。 ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。 J Eur Acad Dermatol Venereol。 2020; 34(12):2717-2744。 9。 Drucker AM,Ellis AG,Bohdanowicz M等。 针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。 Jama Dermatol。 2020; 156(6):659-667。 10。 Siegels D,Heratizadeh A,Abraham S等。 过敏。新泽西州麦迪逊:Leo Pharma Inc.; 2022年1月。2。cibinqo [软件包插入]。纽约,纽约:辉瑞实验室; 2023年2月。3。eucrisa [包装插入]。纽约,纽约:辉瑞实验室; 2023年4月。4。opzelura [包装插入]。威尔明顿,德:Incyte Corporation; 2023年1月。5。rinvoq [包插入]。北芝加哥,伊利诺伊州:Abbvie Inc.; 2023年6月。 6。 Sidbury R,Davis DM,Cohen DE等。 针对特应性皮炎管理的护理指南:第3节。 通过光疗和全身性剂进行管理和治疗。 J Am Acad Dermatol。 2014; 71(2):327-49。 7。 Boguniewicz M,Alexis AF,Beck LA等。 对中度至重度特应性皮炎的管理专家观点:一种解决当前和新兴疗法的多学科共识。 J ALLERGY CLIN IMMUNOL实践。 2017; 5(6):1519-1531。 8。 Wollenberg A,Christen-ZächS,Taieb A等。 ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。 J Eur Acad Dermatol Venereol。 2020; 34(12):2717-2744。 9。 Drucker AM,Ellis AG,Bohdanowicz M等。 针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。 Jama Dermatol。 2020; 156(6):659-667。 10。 Siegels D,Heratizadeh A,Abraham S等。 过敏。北芝加哥,伊利诺伊州:Abbvie Inc.; 2023年6月。6。Sidbury R,Davis DM,Cohen DE等。 针对特应性皮炎管理的护理指南:第3节。 通过光疗和全身性剂进行管理和治疗。 J Am Acad Dermatol。 2014; 71(2):327-49。 7。 Boguniewicz M,Alexis AF,Beck LA等。 对中度至重度特应性皮炎的管理专家观点:一种解决当前和新兴疗法的多学科共识。 J ALLERGY CLIN IMMUNOL实践。 2017; 5(6):1519-1531。 8。 Wollenberg A,Christen-ZächS,Taieb A等。 ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。 J Eur Acad Dermatol Venereol。 2020; 34(12):2717-2744。 9。 Drucker AM,Ellis AG,Bohdanowicz M等。 针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。 Jama Dermatol。 2020; 156(6):659-667。 10。 Siegels D,Heratizadeh A,Abraham S等。 过敏。Sidbury R,Davis DM,Cohen DE等。针对特应性皮炎管理的护理指南:第3节。通过光疗和全身性剂进行管理和治疗。J Am Acad Dermatol。2014; 71(2):327-49。 7。 Boguniewicz M,Alexis AF,Beck LA等。 对中度至重度特应性皮炎的管理专家观点:一种解决当前和新兴疗法的多学科共识。 J ALLERGY CLIN IMMUNOL实践。 2017; 5(6):1519-1531。 8。 Wollenberg A,Christen-ZächS,Taieb A等。 ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。 J Eur Acad Dermatol Venereol。 2020; 34(12):2717-2744。 9。 Drucker AM,Ellis AG,Bohdanowicz M等。 针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。 Jama Dermatol。 2020; 156(6):659-667。 10。 Siegels D,Heratizadeh A,Abraham S等。 过敏。2014; 71(2):327-49。7。Boguniewicz M,Alexis AF,Beck LA等。对中度至重度特应性皮炎的管理专家观点:一种解决当前和新兴疗法的多学科共识。J ALLERGY CLIN IMMUNOL实践。2017; 5(6):1519-1531。 8。 Wollenberg A,Christen-ZächS,Taieb A等。 ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。 J Eur Acad Dermatol Venereol。 2020; 34(12):2717-2744。 9。 Drucker AM,Ellis AG,Bohdanowicz M等。 针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。 Jama Dermatol。 2020; 156(6):659-667。 10。 Siegels D,Heratizadeh A,Abraham S等。 过敏。2017; 5(6):1519-1531。8。Wollenberg A,Christen-ZächS,Taieb A等。ETFAD/EADV湿疹湿疹工作组2020年的立场论文,内容涉及成人和儿童特应性皮炎的诊断和治疗。J Eur Acad Dermatol Venereol。2020; 34(12):2717-2744。9。Drucker AM,Ellis AG,Bohdanowicz M等。针对特应性皮炎患者的全身免疫调节治疗 - 全身性综述和网络荟萃分析。Jama Dermatol。2020; 156(6):659-667。10。Siegels D,Heratizadeh A,Abraham S等。 过敏。Siegels D,Heratizadeh A,Abraham S等。过敏。在特应性皮炎管理中的系统治疗:系统评价和荟萃分析。2021; 76(4):1053-1076。11。Sawangjit R,Dilokthornsakul P,Lloyd-Lavery A,Lai NM,Dellavalle R,Chaiyakunapruk N.湿疹的全身治疗方法:网络荟萃分析。Cochrane数据库Syst Rev.2020; 9:CD013206。发布于2020年9月14日。12。特应性皮炎标准:关于不断发展的治疗景观的实用建议。Ann Allergy哮喘免疫。 2018; 120:10-22。Ann Allergy哮喘免疫。2018; 120:10-22。2018; 120:10-22。
1. Kuehnast, T.、Kumpitsch, C.、Mohammadzadeh, R.、Weichhart, T.、Moissl-Eichinger, C. 和 Heine, H. 2024.《探索人类古生物组:其与健康和疾病的相关性及其与人类免疫系统的复杂相互作用》,FEBS 杂志。 10.1111/febs.17123 2. Zamyatina, A., Strobl, S., Zucchetta, D., Vasicek, T., Alessandro, M., Ruda, A., Widmalm, G. 和 Heine, H. 2024.《非还原糖支架能够开发具有皮摩尔效力的免疫调节 TLR4 特异性 LPS 模拟物》,Angew Chem Int Ed Engl:e202408421。 10.1002/anie.202408421 3. Heine, H.、Adanitsch, F.、Peternelj, TT、Haegman, M.、Kasper, C.、Ittig, S.、Beyaert, R.、Jerala, R. 和 Zamyatina, A. 2021.《使用二糖脂质 A 模拟物定制调节细胞促炎反应》,Front Immunol,12:631797。10.3389/fimmu.2021.631797 4. Vierbuchen, T.、Stein, K. 和 Heine, H. 2019.《RNA 正在造成损害:RNA 特异性 Toll 样受体对健康和疾病的影响》,Allergy,74:223-35。 10.1111/all.13680 5. Stein, K., Brand, S., Jenckel, A., Sigmund, A., Chen, ZJ, Kirschning, CJ, Kauth, M. 和 Heine, H. 2017.“树突状细胞对乳酸乳球菌 G121 及其 RNA 的内体识别是其抗过敏作用的关键”,《过敏与临床免疫学杂志》,139:667-78 e5。 10.1016/j.jaci.2016.06.018 6. Vierbuchen, T.、Bang, C.、Rosigkeit, H.、Schmitz, RA 和 Heine, H. 2017. “与人类相关的古细菌 Methanosphaera stadtmanae 通过其 RNA 被识别并诱导 TLR8 依赖的 NLRP3 炎症小体激活”,Front Immunol,8:1535。10.3389/fimmu.2017.01535 7. Bang, C.、Weidenbach, K.、Gutsmann, T.、Heine, H. 和 Schmitz, RA 2014. “肠道古细菌 Methanosphaera stadtmanae 和 Methanobrevibacter smithii 激活人类树突状细胞”, PloS one, 9: e99411。10.1371/journal.pone.0099411 8. Debarry, J.、Hanuszkiewicz, A.、Stein, K.、Holst, O. 和 Heine, H. 2010.《鲁氏不动杆菌 F78 的过敏保护特性是由其脂多糖赋予的》,过敏,65:690-7。 10.1111/j.1398-9995.2009.02253.x 9. Debarry, J.、Garn, H.、Hanuszkiewicz, A.、Dickgreber, N.、Blumer, N.、von Mutius, E.、Bufe, A.、Gatermann, S.、Renz, H.、Holst, O. 和 Heine, H. 2007.“从农场牛棚中分离出的鲁氏不动杆菌和乳酸乳球菌菌株具有很强的过敏保护特性”,过敏与临床免疫学杂志,119:1514-21。 10.1016/j.jaci.2007.03.023 10. Heine, H.、Kirschning, CJ、Lien, E.、Monks, BG、Rothe, M. 和 Golenbock, DT 1999.《切割
反思•PJ Busse,Christian SC,MA,Banking A,Bernstein JA,Castal AJ,Craig T,Davis-Lorton M,Frank MM,Li HH,Lumry WR,Zuraw BL。美国海亚医学顾问委员会临床受试者实践。2021 JAN; 9:132-150.e3。doi:10.1016/j。Jaip.2020.08.046。 EPUB 2020年9月6日。 •Cugno M,Zanichelli A,临床进度。 趋势mol Med。 2009在15:69-78中。 doi:10.1016/j.molmed.2008.12,0 Epub 2009 1月21日。 引用PubMed C1INH(SERPING1)基因具有血管性水肿的分裂。 基因组res。 2008; 121(3-4):181-8 doi:10,1159/00013883。 Epub 2008年8月28日。 •Papalardo E,Cacia S,Hapeni C,Tordai A,Zingale LC,CicardiM。继承:相关功能。 免疫摩尔。 2008AUG; 45(13):3536-44。 doi:10.1016/j.molimm.2008.05.0 Epub 2008 Jun 30。 •Sinnanamby,ISA-PP,Roberts L.Jaip.2020.08.046。EPUB 2020年9月6日。•Cugno M,Zanichelli A,临床进度。趋势mol Med。2009在15:69-78中。 doi:10.1016/j.molmed.2008.12,0 Epub 2009 1月21日。 引用PubMed C1INH(SERPING1)基因具有血管性水肿的分裂。 基因组res。 2008; 121(3-4):181-8 doi:10,1159/00013883。 Epub 2008年8月28日。 •Papalardo E,Cacia S,Hapeni C,Tordai A,Zingale LC,CicardiM。继承:相关功能。 免疫摩尔。 2008AUG; 45(13):3536-44。 doi:10.1016/j.molimm.2008.05.0 Epub 2008 Jun 30。 •Sinnanamby,ISA-PP,Roberts L.2009在15:69-78中。 doi:10.1016/j.molmed.2008.12,0Epub 2009 1月21日。引用PubMedC1INH(SERPING1)基因具有血管性水肿的分裂。 基因组res。 2008; 121(3-4):181-8 doi:10,1159/00013883。 Epub 2008年8月28日。 •Papalardo E,Cacia S,Hapeni C,Tordai A,Zingale LC,CicardiM。继承:相关功能。 免疫摩尔。 2008AUG; 45(13):3536-44。 doi:10.1016/j.molimm.2008.05.0 Epub 2008 Jun 30。 •Sinnanamby,ISA-PP,Roberts L.C1INH(SERPING1)基因具有血管性水肿的分裂。基因组res。2008; 121(3-4):181-8 doi:10,1159/00013883。 Epub 2008年8月28日。 •Papalardo E,Cacia S,Hapeni C,Tordai A,Zingale LC,CicardiM。继承:相关功能。 免疫摩尔。 2008AUG; 45(13):3536-44。 doi:10.1016/j.molimm.2008.05.0 Epub 2008 Jun 30。 •Sinnanamby,ISA-PP,Roberts L.2008; 121(3-4):181-8 doi:10,1159/00013883。Epub 2008年8月28日。•Papalardo E,Cacia S,Hapeni C,Tordai A,Zingale LC,CicardiM。继承:相关功能。免疫摩尔。2008AUG; 45(13):3536-44。 doi:10.1016/j.molimm.2008.05.0Epub 2008 Jun 30。•Sinnanamby,ISA-PP,Roberts L.遗传性血管性水肿:诊断,临床意义和病理生理学。adv ther。2023 MAR; 40(3):814-827.DOI:10.1007/S12325-022-02401-0。EPUB 2023 JAN 7。引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36609679)•Veronez CL,Csuka D,Sheikh FR,Sheikh FR,Zuraw BL,Farkas H,BorkK。J Allergy Clin Immunol实践。2021Jun; 9(6):2229-2234。 doi:10.1016/j.jaip.2021.03.008。EPUB 2021 3月19日。引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/33746090)•Wouters D,Wagenaar-Bos I,Van Ham M,Zeerleder S. Zeerleder S. C1抑制剂:只是SerineProtease抑制剂抑制剂?关于C1抑制剂治疗应用的新旧考虑。专家意见Biol Ther。2008年8月; 8(8):1225-40。 doi:10.1517/14712598.8。8.1225。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/18613773)•Zuraw bl。临床实践。遗传性血管性水肿。n Engl J Med。2008 sep4; 359(10):1027-36。 doi:10.1056/nejmcp0803977。没有抽象可用。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/18768946)
References • Ariano A, D'Apolito M, Bova M, Bellanti F, Loffredo S, D'Andrea G, Intrieri M,Petraroli A, Maffione AB, Spadaro G, Santacroce R, Margaglione M. A myoferlingain-of-function variant associates with a new type of hereditary血管性水肿。2020年11月; 75(11):2989-2992。 doi:10.1111/all.14454。EPUB 2020 7月1日NoAbstract可用。引用PubMed(https://www.ncbi.nlm.nih.gov/ PubMed/32542751)•Bork K,Machnig T,Wulff K,WiTzke G,Prusty S,Hardt J.具有正常C1抑制剂的遗传性血管性水肿类型的临床特征:对定性证据的系统评价。orphanet j Rare。2020OCT 15; 15(1):289。DOI:10.1186/S13023-020-01570-X。 Citation on PubMed (https://www.ncbi.nlm.ni h.gov/pubmed/33059692) • Bork K, Wulff K, Mohl BS, Steinmuller-Magin L, Witzke G, Hardt J, Meinke P.Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6基因突变。 J过敏临床免疫。 2021年10月; 148(4):1041-1048。 doi:10.1016/j.jaci。 2021.01.011。 EPUB 2021 JAN 25。 Citation on PubMed (https://www.ncbi.nlm.nih.gov/ pubmed/33508266) • Busse PJ, Christiansen SC, Riedl MA, Banerji A, Bernstein JA, Castaldo AJ,Craig T, Davis-Lorton M, Frank MM, Li HH, Lumry WR, Zuraw BL. 美国海上医学顾问委员会2020年遗传性血管性水肿管理指南。 Jallergy Clin Immunol实践。 2021 JAN; 9(1):132-150.e3。 doi:10.1016/j。 Jaip.2020.08.046。 EPUB 2020年9月6日。 amj hum Genet。 2006年12月; 79(6):1098-104。 doi:10.1086/509899。2020OCT 15; 15(1):289。DOI:10.1186/S13023-020-01570-X。Citation on PubMed (https://www.ncbi.nlm.ni h.gov/pubmed/33059692) • Bork K, Wulff K, Mohl BS, Steinmuller-Magin L, Witzke G, Hardt J, Meinke P.Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6基因突变。J过敏临床免疫。 2021年10月; 148(4):1041-1048。 doi:10.1016/j.jaci。 2021.01.011。 EPUB 2021 JAN 25。 Citation on PubMed (https://www.ncbi.nlm.nih.gov/ pubmed/33508266) • Busse PJ, Christiansen SC, Riedl MA, Banerji A, Bernstein JA, Castaldo AJ,Craig T, Davis-Lorton M, Frank MM, Li HH, Lumry WR, Zuraw BL. 美国海上医学顾问委员会2020年遗传性血管性水肿管理指南。 Jallergy Clin Immunol实践。 2021 JAN; 9(1):132-150.e3。 doi:10.1016/j。 Jaip.2020.08.046。 EPUB 2020年9月6日。 amj hum Genet。 2006年12月; 79(6):1098-104。 doi:10.1086/509899。J过敏临床免疫。2021年10月; 148(4):1041-1048。 doi:10.1016/j.jaci。2021.01.011。EPUB 2021 JAN 25。Citation on PubMed (https://www.ncbi.nlm.nih.gov/ pubmed/33508266) • Busse PJ, Christiansen SC, Riedl MA, Banerji A, Bernstein JA, Castaldo AJ,Craig T, Davis-Lorton M, Frank MM, Li HH, Lumry WR, Zuraw BL.美国海上医学顾问委员会2020年遗传性血管性水肿管理指南。Jallergy Clin Immunol实践。2021 JAN; 9(1):132-150.e3。doi:10.1016/j。Jaip.2020.08.046。 EPUB 2020年9月6日。 amj hum Genet。 2006年12月; 79(6):1098-104。 doi:10.1086/509899。Jaip.2020.08.046。EPUB 2020年9月6日。amj hum Genet。2006年12月; 79(6):1098-104。 doi:10.1086/509899。引用于PubMed(https://www.ncbi.nlm.nlm.nlm.nh.g ov/pubMed/32898710)•Circhon S,Martin L,Hennies HC,Muller F,Muller F,Van Driesche K,Van Driesche K,Carphens W,Stevens W,Stevens W,Colombo rork kne bork kne bork bork bork bork bork born con n of drouet the n of drouet the n of drouet the n of drouet。Epub 2006年10月18日。 引用PubMed(https://pubmed.ncbi.nlm.nih.gov/17186468)或免费文章Epub 2006年10月18日。引用PubMed(https://pubmed.ncbi.nlm.nih.gov/17186468)或免费文章
参考文献1。Nieuwenhuis等人,2012年,《九个母猪牛群中猪生殖和呼吸综合征病毒爆发的经济分析》。VET REC 170:225 2。 progressis通知(SPC)(国家)3。 Reynaud等人,在受污染的环境中使用灭活的PRRS疫苗的镀金和母猪接种疫苗接种的动物效应。 IPVS 2000:601 4。 Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。 Pig Journal 2001,48:120-137 5。 Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。 APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565VET REC 170:225 2。progressis通知(SPC)(国家)3。Reynaud等人,在受污染的环境中使用灭活的PRRS疫苗的镀金和母猪接种疫苗接种的动物效应。IPVS 2000:601 4。 Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。 Pig Journal 2001,48:120-137 5。 Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。 APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565IPVS 2000:601 4。Joisel等人,PRRS:带有疫苗接种疫苗的疫苗接种。Pig Journal 2001,48:120-137 5。Lopez and Osorio,2004年,中和抗体在PRRSV保护免疫中的作用,兽医免疫疾病102:155-163 6。 Kim等人,在韩国农场中疫苗接种EU型PRRS疫苗后的ELISA抗体反应。APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。 APVS 2015:84 7。 Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。 ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565APVS 2015:83 b。 Kim等人,SOW中的血清中和(SN)抗体反应,并在韩国农场的eu型PRRS疫苗中播种后转移到小猪中。APVS 2015:84 7。Juillard等人,带有不同PRRSV菌株的离体刺激,用于细胞介导的疫苗接种猪的免疫力监测。ISERPD 2007:144 8。 diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。 VET Journal 197:438-444 9。 Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。 proc。 国际PRRSV大会根特2015:103 10。 Delany等人,2014年,21世纪的疫苗。 IPVS 2014:565ISERPD 2007:144 8。diaz等,2013年,比较不同的疫苗接种时间表,以维持针对猪生殖和呼吸综合征病毒的免疫反应。VET Journal 197:438-444 9。Meyns等人,PRRSV疫苗接种的未来:通过灭活的疫苗提升,以利用先前存在的免疫力,对更强大的保护的创新。proc。国际PRRSV大会根特2015:103 10。Delany等人,2014年,21世纪的疫苗。IPVS 2014:565IPVS 2014:565Embo Mol Med,6(6):708–720 11。lu,2009年,异源原始促进疫苗接种。Curr Opin Immunol 21(3):346–351 12。Nolz和Harty,2011年,促进疫苗接种的策略和影响,以产生记忆CD8 T细胞。Adv Exp Med Biol 780:69-83 13。Knockaert等人,在PRRSV感染的农场妊娠结束时进行进展后的生殖性能改善了。ESPHM 2015:PO84 14。 Willems等人,在繁殖者中实施混合PRRSV疫苗计划后,苗圃和增生单元中PRRSV循环的稳定。 ESPHM 2015:PO 74 15。 Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。 IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。ESPHM 2015:PO84 14。Willems等人,在繁殖者中实施混合PRRSV疫苗计划后,苗圃和增生单元中PRRSV循环的稳定。ESPHM 2015:PO 74 15。 Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。 IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。ESPHM 2015:PO 74 15。Willems,PRRSV疫苗接种计划的有益影响,该计划结合了经过改良的实时疫苗和ProgressISR对病毒循环和技术性能的影响。IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。 IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。IPVS 2016:PO-PW1-147 16 Spaans等人,双技术效应的效应Prim Boost Boost在SOWS中的疫苗接种在pRRSV后prrsv中的循环中的疫苗接种。IPVS 2016:PO-PW1-182 17。 defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。IPVS 2016:PO-PW1-182 17。defoort等人,在妊娠结束时使用ProgressISR的疫苗接种程序在农场中稳定PRRSV循环。
Acta BBA ‐ Mol Basis Dis 。2017;1863(2):499-508。https://doi.org/10.1016/j.bbadis.2016.10.006 2. Hersey M、Woodruff J、Maxwell N 等人。高脂饮食会诱发神经炎症并降低肥胖大鼠海马对依他普仑的血清素反应。脑行为免疫。2021;96:63-72。https://doi.org/10.1016/j.bbi.2021.05.010 3. Wakabayashi T、Yamaguchi K、Matsui K 等人。饮食和基因诱导的大脑胰岛素抵抗对阿尔茨海默病小鼠模型中淀粉样蛋白病理的不同影响。 Mol Neurodegener。2019;14(1):15。https://doi.org/10.1186/s13024‐019‐0315-7 4. Zeyda M、Stulnig TM。脂肪组织巨噬细胞。Immunol Lett。2007;112(2):61-67。https://doi.org/10.1016/j.imlet.2007.07.003 5. Hahm JR、Jo MH、Ullah R、Kim MW、Kim MO。代谢应激改变抗氧化系统,抑制脂联素受体 1 并在小鼠脑中诱发类似阿尔茨海默氏症的病理。Cells。2020;9:249。 https://doi.org/10.3390/cells9010249 6. Mosser DM, Edwards JP。探索巨噬细胞活化的全部范围。Nat Rev Immunol。2008;8(12):958-969。https://doi.org/10. 1038/nri2448 7. Agustí A, García‐Pardo MP, López‐Almela I 等人。肠脑轴、肥胖和认知功能之间的相互作用。Front Neurosci。2018;12:155。https://doi.org/10.3389/fnins.2018.00155 8. Valdes AM, Walter J, Segal E, Spector TD。肠道菌群在营养和健康中的作用。BMJ。 2018;361:k2179。https://doi.org/10. 1136/bmj.k2179 9. Fricker M、Tolkovsky AM、Borutaite V、Coleman M、Brown GC。神经元细胞死亡。Physiol Rev。2018;98(2):813-880。https://doi. org/10.1152/physrev.00011.2017 10. Xu X、Lai Y、Hua ZC。细胞凋亡和凋亡小体:疾病信息和治疗靶点潜力。Biosci Rep。2019;39(1): BSR20180992。https://doi.org/10.1042/bsr20180992 11. Jan R、Chaudhry GE。了解针对细胞凋亡和凋亡途径的癌症治疗方法。Adv Pharm Bull。2019;9(2): 205-218。https://doi.org/10.15171/apb.2019.024 12. Green DR、Llambi F。细胞死亡信号。Cold Spring Harb Perspect Biol。2015;7(12):a006080。https://doi.org/10.1101/cshperspect.a0 06080 13. Khalifeh M、Penson PE、Banach M、Sahebkar A。他汀类药物作为抗焦亡药物。Arch Med Sci。2021;17(5):1414-1417。https://doi。 org/10.5114/aoms/141155 14. Winkler S、Rösen‐Wolff A。胱天蛋白酶-1:先天免疫的综合调节器。免疫病理学研讨会。2015;37(4):419-427。https://doi.org/ 10.1007/s00281-015-0494-4 15. Denes A、Lopez-Castejon G、Brough D。胱天蛋白酶-1:IL-1 只是冰山一角吗?细胞死亡研究。2012;3(7):e338。https://doi.org/10. 1038/cddis.2012.86 16. Makoni NJ、Nichols MR。胱天蛋白酶-1 活化的复杂生物物理谜题。生物化学与生物物理研究。 2021;15:108753。https://doi.org/ 10.1016/j.abb.2021.108753 17. Schmid‐Burgk JL、Gaidt MM、Schmidt T、Ebert TS、Bartok E、Hornung V。Caspase-4 介导人类髓系细胞中 NLRP3 炎症小体的非典型激活。Eur J Immunol。2015;45(10):2911-2917。 https://doi.org/10.1002/eji.201545523 18. Sankari SL、Masthan KM、Babu NA、Bhattacharjee T、Elumalai M。癌症中的细胞凋亡——更新。亚洲太平洋癌症预防杂志 APJCP 。 2012;13(10):4873-4878。 https://doi.org/10.7314/apjcp.2012.13.10。 4873 19. Gómez‐Apo E、Mondragón‐Maya A、Ferrari‐Díaz M、Silva‐Pereyra J. 与超重和肥胖相关的大脑结构变化。 J奥贝斯。 2021;2021:6613385-6613418。 https://doi.org/10.1155/2021/ 6613385 20. Herrmann MJ、Tesar A.-K、Beier J、Berg M、Warrings B. 肥胖中的灰质改变:全脑研究的荟萃分析。Obes Rev。2019;20(3):464-471。https://doi.org/10.1111/obr.12799
