简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
通过细指栅技术,在 InAs 纳米线上实现了集成量子点 (QD) 电荷传感器的串行三量子点 (TQD)。通过直接传输测量和电荷传感器检测测量,研究了器件在少电子状态下的复杂电荷状态和有趣特性。由 TQD 中的 QD 和传感器 QD 形成的电容耦合并联双 QD 的电荷稳定性图显示 TQD 和传感器 QD 之间存在明显的电容耦合,表明电荷传感器具有良好的灵敏度。通过电荷传感器测量 TQD 的电荷稳定性图,同时进行的直接传输测量和基于有效电容网络模型的模拟很好地再现了电荷稳定性图中的整体特征。使用集成电荷传感器在能量退化区域详细测量了 TQD 的复杂电荷稳定性图,其中所有三个 QD 都处于或接近共振状态,并且观察到了四重点和所有可能的八种电荷状态的形成。此外,还演示并讨论了 TQD 作为量子细胞自动机的运行。
表面和界面的电子结构对量子器件的特性起着关键作用。在这里,我们结合密度泛函理论与混合泛函以及最先进的准粒子引力波 (QSGW) 计算,研究了实际的 Al / InAs / Al 异质结的电子结构。我们发现 QSGW 计算和混合泛函计算之间具有良好的一致性,而后者本身与角分辨光电子能谱实验相比也非常出色。我们的论文证实,需要对界面质量进行良好的控制,才能获得 InAs / Al 异质结所需的特性。对自旋轨道耦合对电子态自旋分裂的影响的详细分析表明,k 空间中存在线性缩放,这与某些界面态的二维性质有关。QSGW 和混合泛函计算的良好一致性为可靠地使用 QSGW 的有效近似来研究非常大的异质结打开了大门。
这些材料在激光中被广泛应用,包括作为激光器中的活性介质[3-5]、作为量子信息技术的纯单光子和纠缠光子对源[6]、以及作为新型纳米存储器件的构建块。[7-9] 特别是 InAs/InP 量子点,由于其与 1.55 μ m 的低损耗电信 C 波段兼容,目前作为单光子发射器非常有吸引力。[10,11] 金属有机气相外延 (MOVPE) 中的液滴外延 (DE) 是一种新近且非常有前途的 QD 制造方法,因为它结合了大规模外延技术和多功能外延方法。[12-15] 这是一种相对较新的工艺,其生长动力学尚未完全了解,特别是对于与电信波长兼容的 III-V 材料系统,例如 InAs/InP。因此,它在制造用于广泛应用的电信 QD 方面具有巨大的发展潜力。此外,使用 InP 作为基质材料可以实现 InAs 量子发射体的生长,而无需任何额外的变质缓冲剂(例如 AlInAs/GaAs)。[16 – 18]
图S2:A,长INSB-SN部分的SEM图像。观察到NW远离SN沉积方向的小弯曲。这可以归因于材料的不同热膨胀系数,也可以归因于界面中的残余应变。6,7 B,鳗鱼elemental sn,sb和NWS的INSB/INAS部分。在INSB表面上可以理解连续的SN壳,而它作为INAS茎上的离散岛沉积。c,从(b)中标记为in,sn和sb边缘标记的(b)中标记的区域提取的鳗鱼光谱。d,INAS和INSB之间的交点区域的底部曲率。SN通常在该区域不存在。这可能是由于弯曲区域中的高表面能,或者当SN沉积时可能会被遮盖。比例尺为:(a)100 nm,(b)100 nm,(d)20 nm。
需要控制以定义设备性能的大小参数。第五组元素二晶曲是一种特殊的材料,在III - V材料生长8中既充当表面活性剂,又是许多量子材料中的组成部分。9从第一个原则计算中,众所周知,如果将BI纳入具有诱导非平地拓扑特性的其他III - V化合物频段Invers Invers Invers 10中,则基于III III-BI Alloys的组合。inas作为III - V半导体系统之一,以优于标准的基于SI的技术。这种化合物对于红外探测器,14个低功率电子15和量子计算具有很大的潜力。1 INA通常在锌混合物(ZB)结构中结晶,但也可以在低维结构中生长在Wurtzite(WZ)相。这为基于带隙异质结构16,17的探索和创建新型设备打开了大门,以及较低的临时和大气条件的敏感性。试图将BI纳入INAS晶格时,出现了18个困难。由INBI区域和INAS 10区域之间的较大的混乱差距是由各自的四方和立方晶格结构产生的,在散装材料的生长过程中会产生BI ADATOM的相位分离和群集。19
简要概述了量子点及其应用。这些伪原子或人造原子提供了广泛的实际应用,因为它们的尺寸、形状和组成都是可调的。对其光学、热学、电子学和传输特性进行理论研究的基本要素是能谱,这可以通过数值方法获得。最简单、最可靠的方法之一是基于有限差分方法的方法。提到了该方法的基本方法。针对不同点尺寸的球形和立方体空间限制,给出了单电子 GaAs 和 InAs 量子点能级的一些结果。发现形状的影响与量子点的半导体材料类型无关。与球形限制相比,立方体限制中的能级更高,这可以解释为由于更高的表面与体积比。此外,还发现 InAs QD 的能量值高于 GaAs QD,这是由于两种不同材料中电子的有效质量不同。关键词:量子点;数值模拟;有限差分方法
VIGO Photonics 设计和制造 HgCdTe、InAs 和 InAsSb 探测器、专用电子设备(前置放大器、TEC 控制器、电源)、探测模块以及机械配件。这些设备的特点是灵敏度高,光谱范围广,从 2 到 14 μm,速度快,频率带宽高达 1 GHz。