红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
摘要 :GaAs 基材料系统因可承载具有出色光学特性的 InAs 量子点 (QD) 而闻名,这些量子点的发射波长通常为 900 nm 左右。插入变质缓冲区 (MMB) 可以将这种发射转移到以 1550 nm 为中心的具有技术吸引力的电信 C 波段范围。然而,常见 MMB 设计的厚度(> 1 𝜇 m)限制了它们与大多数光子谐振器类型的兼容性。在这里,我们报告了一种新型 InGaAs MMB 的金属有机气相外延 (MOVPE) 生长,该 MMB 具有非线性铟含量渐变分布,旨在在最小层厚度内最大化塑性弛豫。这使我们能够实现晶格常数的必要转变并为 180 nm 内的 QD 生长提供光滑的表面。展示了沉积在此薄膜 MMB 顶部的 InAs QD 在 1550 nm 处的单光子发射。通过纳米结构技术将新设计集成到靶心腔中,证明了新设计的强度。
胶体量子点 (CQDs) 因其可调带隙和溶液处理特性,是用于红外 (IR) 光检测的有前途的材料;然而,到目前为止,CQD IR 光电二极管的时间响应不如 Si 和 InGaAs。据推测,II-VI CQD 的高介电常数会导致由于屏蔽和电容而导致的电荷提取速度变慢,而 III-V 族(如果可以掌握其表面化学性质)则可提供低介电常数,从而增加高速操作的潜力。在初步研究中发现,砷化铟 (InAs) 中的共价特性会导致不平衡的电荷传输,这是未钝化表面和不受控制的重掺杂的结果。报道了使用两性配体配位进行表面管理,并且发现该方法同时解决了 In 和 As 表面悬空键。与 PbS CQD 相比,新型 InAs CQD 固体兼具高迁移率(0.04 cm 2 V − 1 s − 1),介电常数降低了 4 倍。由此产生的光电二极管实现了快于 2 ns 的响应时间——这是之前报道的 CQD 光电二极管中最快的光电二极管——并且在 940 nm 处具有 30% 的外部量子效率 (EQE)。
引言半导体量子点(QD)是一种定制的合成,相当于原子,在广泛的现代半导体设备中发现了用途1。纳米构造已经提供了广泛的电子和光学特性。本文将通过专注于当今研究的三个独特的Keystone系统的电子结构来证明其巨大的潜力2和可调节性3-5:(i)SB-INAS /GAAS SubMonolayer QD,(II)在1-x Ga x中为y SB 1- y SB 1-y /y /y /y /gap qds和(III)QD基于QD的量子量子cascade cascade lasscade lasscade lassersersers。(i)在过去的20年1,6中,INAS/GAAS QD一直是综合研究的重点,导致量子点激光器7和单光子发射器2,8。为提高QD密度和改善载体动力学,在GAA上开发了QD形成9、10:INAS的沉积量少于GAAS的QD形成9、10:在GAAS上的单层(ML)的沉积,然后重复多个时间,以重复多个时间
摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
摘要:在电信 C 波段中,1550 nm 处的纠缠光子生成至关重要,因为它能够利用已部署的电信基础设施实现长距离量子通信协议。InAs 外延量子点最近已实现在此波长范围内按需生成纠缠光子。然而,由精细结构分裂引起的时间相关状态演化目前将保真度限制在特定的纠缠态。在这里,我们展示了使用微机械压电致动器对 InAs 量子点的精细结构抑制,并演示了在 1550 nm 处生成高度纠缠的光子。在最低精细结构设置下,我们获得了 90.0 ± 2.7% 的最大保真度(同时率为 87.5 ± 3.1%)。对于中等(弱)时间滤波,同时性仍然很高,值接近 80%(50%),分别对应于收集到的光子的 30%(80%)。所提出的精细结构控制为在基于光纤的量子通信协议中利用量子点的纠缠光子开辟了道路。关键词:半导体量子点、纠缠光子、应变调谐、精细结构分裂、量子态层析成像、电信波长、单光子源
在SI中集成的高质量量子点(QD)的线性阵列是探索量子信息的操纵和传输的理想平台。因此,了解与SI技术兼容的底物的QD自组织机制至关重要。在这里,我们证明了INAS和INGAAS QD的线性阵列的外延生长来自AS 2和裸露和GAAS涂层Si(001)底物的分子束,由高分辨率激光干扰纳米义造影。原子力MI司法检查与高分辨率扫描和透射电子显微镜结合使用,表明,当QDS的生长选择性,横向顺序和尺寸均匀性的提高时,QDS的大小为1 nm thick thick gaas gaas buffer层是在INAS沉积之前种植的。此外,x ga 1-x作为QD的优先成核沿<110>的纳米结构的gaas-on-si(001)底物的面向面向的边缘从Adatom迁移中从(111)迁移到(111)到(001)纳米和湿润层引起的湿润层引起的EDM迁移而产生。 Stranski-Krastanov过渡。这些是相干QD的线性阵列形成的关键要素,它们的形态和结构与GAAS(001)和Si(001)平面表面上的形态和结构不同。
摘要SI是最重要的半导体材料之一,因为它一直是现代电子产品的支柱。但是,由于Si是间接带隙的结果,因此它不广泛用于发光源,因为Si是效率低下的发射极。硅底物上III-V纳米结构的直接外延生长是在硅平台上实现光子设备的最有前途的候选者之一。III-V在Si上的整体整合的主要问题是高密度螺纹位错的形成。TDS的传播将导致IIII-V外部活性区域中非辐射重组中心的高比例。为了停止TD传播,已经应用并在本演示文稿中使用了不同的外延策略,例如INGA(AL)作为应变层,GE缓冲层和图案化的底物。作为零维的材料,量子点(QD)具有三维量子约束,它会产生三角函数,例如状态的密度。因此,III-V QD激光器具有较低的阈值电流,温度不敏感的操作以及对螺纹位错的敏感性较小,这是在III-V型激光器中形成活性区域的理想候选者。自2011年以来,在UCL的寿命和高功率上,已提出并开发了在SI和GE底物上生长的1300-nm INM/GAAS QD激光器。在本演讲中,将汇总在SI平台上单体生长的INAS/GAAS QD激光的开发里程碑,并且还将预测未来几年的潜在趋势。
我们提出了一种确定半导体背景掺杂类型的方法,即在过度蚀刻的双台面 pin 或 nip 结构上使用电容电压测量。与霍尔测量不同,此方法不受基板电导率的限制。通过测量具有不同顶部和底部台面尺寸的器件的电容,我们能够最终确定哪个台面包含 pn 结,从而揭示本征层的极性。当在 GaSb pin 和 nip 结构上演示时,此方法确定该材料是残留掺杂的 p 型,这已由其他来源充分证实。然后将该方法应用于 10 单层 InAs/10 单层 A1Sb 超晶格,其掺杂极性未知,并表明该材料也是 p 型。