摘要:由于现代人工智能 (AI) 技术(尤其是深度神经学习)的大量工作,智能交通系统(尤其是自动驾驶汽车)引起了研究人员的极大兴趣。由于过去几十年来道路交通事故的增加,重要行业正在转向设计和开发自动驾驶汽车。了解周围环境对于了解附近车辆的行为至关重要,以确保自动驾驶汽车在拥挤的交通环境中安全行驶。目前有多个数据集可用于仅关注结构化驾驶环境的自动驾驶汽车。为了开发一种在本质上非结构化的真实交通环境中行驶的智能汽车,应该有一个专注于非结构化交通环境的自动驾驶汽车数据集。印度驾驶精简版数据集 (IDD-Lite) 专注于非结构化驾驶环境,于 2019 年 NCPPRIPG 作为一项线上竞赛发布。本研究提出了一种可解释的基于初始的 U-Net 模型,并结合 Grad-CAM 可视化进行语义分割,该模型结合基于初始的模块作为编码器以自动提取特征,并传递给解码器以重建分割特征图。深度神经网络的黑箱性质无法在消费者中建立信任。Grad-CAM 用于解释基于深度学习的初始 U-Net 模型,以增加消费者信任。提出的带有 Grad-CAM 模型的初始 U-Net 在印度驾驶数据集 (IDD-Lite) 上实现了 0.622 的交并比 (IoU),优于最先进的 (SOTA) 基于深度神经网络的分割模型。
摘要:最近,脑肿瘤(BT)已成为影响几乎所有年龄段人群的常见现象。使用计算机断层扫描对这种致命疾病的识别,磁共振成像如今非常流行。开发用于诊断和分类BT的计算机辅助设计(CAD)工具已变得至关重要。本文着重于使用深度学习(DL)模型设计用于诊断和分类的工具,该工具涉及通过获取(CT)图像,预处理,细分和分类的一系列步骤,以使用基于DL的Inception网络模型使用SIFT识别肿瘤的类型。所提出的模型使用模糊C表示算法从获取的BT图像中分割感兴趣的区域。诸如高斯幼稚的贝叶斯(GNB)和逻辑回归(LR)等技术用于分类过程。为了确定其效率的所有技术,都使用了基准数据集。模拟结果确保了提出的方法的性能,最大敏感性为100%,特异性为97.41%,精度为97.96%。关键字:脑肿瘤,深度学习,特征提取,模糊C的平均值,Inception v3,Sift,高斯幼稚的贝叶斯,逻辑回归。____________________________________________________________________________
•IPSC衍生的NK细胞(墨水电池)为患者衍生的NK细胞疗法提供了一种高度吸引人的替代方法,既来自治疗功效和安全性的角度,•无鲁棒的3D差异差异方案,可生产墨水细胞,以产生墨水细胞以及通过冻结/融化的方案以及良好的绘制范围•在范围内发挥良好的范围•验证•均具有良好的绘制•绘制墨水范围•绘制墨水素材•墨水的效果•墨水素描•墨水的效果•相当于血液来源的NK细胞•墨水细胞具有完全发挥作用,具有形成裂解免疫突触的能力,从而有效杀死癌细胞系和CLL患者肿瘤细胞
摘要 — 准确地对眼动进行分类对于人机界面、睡眠分期和疲劳检测等各种实际应用都至关重要。然而,基于眼电图 (EOG) 的眼动分类 (EMC) 仍然具有挑战性,现有的解决方案在准确性方面仍然不是最优的。传统的基于机器学习 (ML) 的方法主要关注手工制作的特征,严重依赖于 EOG 分析的先验知识。此外,大多数现有的基于深度学习 (DL) 的方法仅仅专注于提取单尺度或多尺度特征,而不考虑不同层次特征的贡献,从而限制了模型学习判别表示的能力。为了解决上述问题,提出了一种新的基于多尺度 Inception 的深度融合网络 (MIDF-NET),由并行 CNN 流和多尺度特征融合 (MSFF) 模块组成,用于从原始 EOG 信号中提取信息特征。并行的 CNN 流可以有效地提取 EOG 的多尺度表示,而 MSFF 模块融合了这些特征,利用了低级和高级多尺度特征。在 5 个公共 EOG 数据集(50 名受试者和 59 条记录)上进行了全面的实验,包含 5 种眼球运动(眨眼、向上、向下、向右和向左)。还实现了最先进的基于 EOG 的眼球运动方法,包括经典机器学习模型和深度网络,以供比较。实验结果表明,我们的 MIDF-NET 在 5 个公共数据集中实现了最高的准确率(87.7%、86.0%、95.0%、94.2% 和 95.4%),优于最先进的方法,准确率显著提高。总之,提出的 MIDF-NET 可以根据特征融合子网络综合考虑多级特征,并通过增强的 EOG 表示有效地对眼球运动模式进行分类。
机械工程系于1960年成立的机械工程系是NITK最古老,最大的部门。该部门已经穿越了知识传播和发电的道路,并向国家提供了最佳的机械工程毕业生。在这些光荣的60年中,它在教学,研究,咨询,管理和社区服务的关键领域为自己奠定了基础。该部门在B.Tech提供了机械工程计划。水平,热力工程,制造工程,机械设计和机械工程工程,位于M.Tech。级别和M.Tech。(通过研究)和博士计划。该部门与该领域的最新发展和趋势保持最新状态,并在机械工程学各个方面拥有高素质和经验丰富的成员。该部门一直积极开展资助的研发项目,近年来增加了许多研究设施。
识别缺失的药物靶标对于治疗的开发和药物副作用的分子阐明至关重要。通过利用药物和蛋白质靶标的分子、生物学或药理学特征可以预测药物靶标。然而,开发用于预测药物靶标的综合且可解释的机器学习模型仍然是一项具有挑战性的任务。我们提出了 Inception,这是一种用于预测药物靶标的综合且可解释的矩阵完成模型。Inception 是一个自我表达模型,它学习两个相似性矩阵:一个用于药物,另一个用于蛋白质靶标。这些学习到的相似性矩阵是我们模型可解释性的关键:它们可以解释如何用化学、生物学和药理学相似性的线性组合来解释预测的药物-靶标相互作用。我们开发了一种具有有效闭式解的新型目标函数。为了证明 Inception 在恢复缺失的药物-靶标相互作用 (DTI) 方面的能力,我们进行了交叉验证实验,严格控制数据不平衡、药物之间的化学相似性和靶标之间的序列相似性。我们还使用模拟前瞻性方法评估了模型的性能。使用 DrugBank 数据库 2011 年快照中的 DTI 训练我们的模型后,我们测试是否可以预测 DrugBank 2020 年快照中的 DTI。在所有情况下,Inception 的表现都优于两种最先进的药物靶标预测模型。这表明 Inception 可用于预测缺失的药物靶标相互作用,同时提供可解释的预测。
googlenet/Intection v1bn-Inception/Intection v2 v2 v3 Inception v3 v4 v4 v4 v4重新网5 50resnet 101resnet 152inceptionRestv1 inceptionRestv1inceptionRestv2222222
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
摘要:尽管人们对使用脑电图 (EEG) 信号作为主体身份识别的潜在生物特征识别的兴趣日益浓厚,并且在使用深度学习 (DL) 模型研究神经信号(例如心电图 (ECG)、脑电图 (EEG)、视网膜电图 (ERG) 和肌电图 (EMG) )方面也取得了进展,但由于单个主体在不同会话中的 EEG 特征变化很大,因此在使用最先进的 DL 模型进行基于 EEG 的主体身份识别任务方面仍然缺乏探索。在本文中,我们探索使用最先进的 DL 模型(例如 ResNet、Inception 和 EEGNet)在 BED 数据集上实现基于 EEG 的生物特征识别,该数据集包含来自 21 个个体的 EEG 记录。我们获得了令人满意的结果,Resnet、Inception 和 EEGNet 的准确率分别为 63.21%、70.18% 和 86.74%,而之前的最佳成果报告的准确率为 83.51%。我们还通过开发一种便携式、低成本、实时的基于 Raspberry Pi 的系统展示了这些模型实时执行 EEG 生物识别任务的能力,该系统集成了从获取 EEG 信号到预测身份的所有必要主体识别步骤,而其他现有系统仅包含整个系统的部分内容。
1 mth 3 mths 6 mths 1 year 3 years 5 years 10 years Since inception .......................................................................................................................................................................................................... % growth 3.01% -2.28% 1.13% 10.70% 2.98% 52.91% 137.37% 205.66% .......................................................................................................................................................................................................... MSCI ACWI 3.38% 4.78% 7.58% 21.27% 29.24% 72.80% 167.10% 260.11% .......................................................................................................................................................................................................... Sector 3.76% 4.11% 5.81% 12.48% 16.77% 34.08% 75.03% 266.95% .......................................................................................................................................................................................................... Quartile 3 4 3 2 4 1 1 - .......................................................................................................................................................................................................... Rank 94/182 169/182 118/180 66/178 130/168 30/154 24/122 - ..........................................................................................................................................................................................................