我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
这篇主要的研究论文是由Uwindsor奖学金的论文,论文和主要论文免费提供给您的。已被Uwindsor的奖学金授权管理人纳入主要论文。有关更多信息,请联系schoolship@uwindsor.ca。
水平基因转移(HGT)是核进化的基本驱动力,促进了新的特征并适应新环境。尽管其重要性,但很少有系统地比较用于推断HGT的方法,这在我们对它们的相对优势和局限性的理解上留下了差距。验证HGT推理方法是由于缺乏可以证实历史转移事件的基因组化石记录而面临的质疑。没有经验黄金标准,通常会验证新的推理方法的模拟数据;但是,这些模拟可能无法捕获生物学复杂性,并且经常嵌入推理方法本身中使用的相同假设。在这里,我们利用HGT事件的趋势涉及多个相邻的基因来评估不同HGT插入方法的准确性。我们表明,分析基因树木之间基因的存在/不存在模式的方法始终优于基于基因树种树的重新征服的方法。我们的发现挑战了显式系统发育和解方法优于模拟者隐式方法的普遍假设。通过提供全面的台式标记,我们提供了选择适当方法的实用建议,并指示了未来方法论进步的途径。
广泛采用大型语言模型(LLM)需要快速扩展云LLM推理群集,从而导致体现碳的积累 - 制造和提供IT资产的排放 - 主要集中在推理服务器CPU上。本文深入研究了Cloud LLM推论的可持续增长的挑战,强调了在寿命增加的情况下体现的CPU的扩展摊销。鉴于硅老化的可靠性风险,我们提出了一种衰老的CPU核心管理技术来延迟CPU衰老效应,从而使群集操作员可以安全地提高CPU寿命。我们的技术利用了我们在云LLM推理中发现的CPU不足的模式,通过在未使用的核心中停止衰老,并通过选择性深层闲置和衰老的推理任务分配来停止衰老,并在活跃内核中均匀衰老。通过使用现实世界的Azure推理轨迹和来自微软的扩展LLM群集模拟器的大量模拟,我们显示出与现有技术相比,估计通过管理CPU AGING AGING AGIND效果的P99效果,估计较小的cpu inderiation cppy in verne cppy cpputization cppy and cpputiation and cputiation and cputiation and and cpus质量较小,估计降低了年度体现的碳排放量的37.67%。
基于摘要连接组的模型,也称为虚拟脑模型(VBM),已在网络神经科学中得到很好的确定,以研究各种大脑疾病的病理生理原因。在VBM中,个人的大脑成像数据的整合具有提高患者特异性的预测性,尽管即使在最新的蒙特卡洛采样中,贝叶斯对空间分布的参数的估计也仍然具有挑战性。VBM表示由噪声和网络输入驱动的潜在非线性状态空间模型,需要对广泛适用的贝叶斯估计的高级概率机器学习技术。在这里,我们提出了基于仿真的VBM(SBI-VBM)推断,并证明对时空和功能特征的训练深神网络可以准确估算脑疾病中的生成参数。系统使用大脑刺激为估计降解限量限制为较小连接子集的降解提供了有效的补救措施。通过将模型结构优先于数据,我们表明SBI-VBMS中的分层结构使推理更有效,精确和生物学上可行。这种方法可以通过快速,可靠地预测患者特异性脑疾病来广泛提高精度医学。
摘要我们介绍了自我监控的推理时间干预(SMITIN),这是一种使用分类探针来控制自回归的生成音乐变压器的方法。这些简单的逻辑回归探针通过使用表现出特定的音乐性状(例如,鼓声/不存在鼓或真实/合成音乐)的小型音频示例对变压器中每个注意力头的输出进行了训练。然后,我们将注意力头转向探针方向,以确保生成模型输出捕获所需的MUSICAL性状。此外,我们监视探针输出,以避免在自回归产生中添加过量的干预措施,这可能会导致时间上不一致的音乐。我们在音频延续和文本到音乐应用程序中客观和主观验证结果,证明了将控件添加到大多数音乐家的重新培训甚至灌感都是不切实际的大型生成模式中的能力。建议的干预方法的音频样本可在我们的演示页面上
自主代理人与人的互动越来越集中于适应其不断变化的偏好,以改善现实世界任务中的援助。有效的代理必须学会准确地推断出通常隐藏的人类目标,才能很好地进行协作。但是,现有的多代理增强学习(MARL)环境缺乏严格评估这些代理人学习能力所需的必要属性。为此,我们介绍了Color G Rid,这是一种具有可定制的非平稳性,不对称性和奖励结构的新型MARL环境。我们调查了独立的近端政策选择(IPPO),一种最先进的(SOTA)MARL算法,在C olor G ride和通过广泛的消融中找到,尤其是在“人类和“人类较低”的“领导者”代理之间,尤其是在“领导者”中同时进行非平稳和不对称目标的助理代理人,由color color c olor is i i i i i i i i i i i i i i i i i i Is i i是。为了支持未来的MARL算法,我们在https://github.com/andreyrisukhin/colorgrid上发布了环境代码,模型检查点和轨迹可视化。
网络神经科学对于理解复杂大脑(障碍)功能和认知的原理和机制至关重要。在这种情况下,全脑网络建模(也称为虚拟大脑建模)将大脑动力学计算模型(放置在每个网络节点)与单个大脑图像数据(以协调和连接节点)相结合,从而增进我们对大脑复杂动力学及其神经生物学基础的理解。然而,考虑到不同的时空分辨率,仍然迫切需要自动模型反演工具来估计大规模和跨神经成像模式的控制(分叉)参数。本研究旨在通过引入一个灵活、综合的工具包来解决这一差距,该工具包用于在虚拟大脑模型上进行有效的贝叶斯推理,称为虚拟大脑推理(VBI)。该开源工具包提供快速模拟、特征提取分类、高效数据存储和加载以及概率机器学习算法,从而能够从非侵入性和侵入性记录中进行生物物理可解释的推断。通过计算机测试,我们证明了常用全脑网络模型及其相关神经成像数据的推断的准确性和可靠性。VBI 显示出通过不确定性量化来改善网络神经科学中的假设评估的潜力,并通过增强虚拟大脑模型的预测能力为精准医学的进步做出贡献。
有各种模型,涉及人类大脑中知识的生成,包括语义网络模型。尽管已广泛研究了该模型,甚至提出了计算模型,但是由于不同类型的知识的产生各种限制和不官方,它的应用仅限于语义知识,因为它是根据语义记忆和声明性知识形成的,并且在解释各种程序和条件知识方面具有许多限制。鉴于为知识产生提供合适的模型的重要性,尤其是在改善人类认知功能或构建智能机器的领域,改善知识生成中的现有模型或提供更全面的模型具有很大的重要性。在当前的研究中,基于大脑的自由能原理,研究人员提出了一个模型,用于产生三种类型的声明性,程序性和条件知识。在解释不同类型的知识的同时,该模型能够根据概率数学和动作感知过程(主动推论)计算并从刺激中生成概念。所提出的模型是无监督的学习,可以使用不同的刺激作为生成模型来更新自身,可以生成无监督接收的刺激的新概念。在此模型中,主动推理过程用于程序和条件知识的发生,并且感知过程用于生成声明性知识。
此预印本的版权所有者于 2025 年 1 月 24 日发布此版本。;https://doi.org/10.1101/2024.05.15.24306285 doi: medRxiv preprint