行为源自多个在解剖学和功能上不同的大脑区域的协调活动 1,2 。现代实验工具 3–5 使我们能够前所未有地接触大量神经群,甚至是横跨全脑许多相互作用区域的神经群 2 。然而,要理解如此大规模的数据集,不仅需要稳健、可扩展的计算模型来提取区域间通信的有意义特征,还需要原则性理论来解释这些特征。在这里,我们介绍了基于电流的分解 (CURBD),这是一种使用数据约束的循环神经网络模型 6 推断全脑相互作用的方法,该模型一旦经过训练,就会自主产生与实验获得的神经数据一致的动态。CURBD 利用从这些模型推断出的功能相互作用来同时揭示多个大脑区域之间的定向电流。我们首先表明,CURBD 可以在具有已知连接和动态的模拟真实网络中准确地隔离区域间电流。然后,我们将 CURBD 应用于从广泛的神经数据集(斑马鱼幼虫 7 、小鼠 8 、猕猴 9 和人类 10 )获得的多区域神经记录,以证明 CURBD 在解开全脑相互作用和行为背后的区域间通信原理方面的广泛适用性。
我们考虑如何从两个时间和任意数量的量子比特的量子实验中分辨出与测量数据相关的时间顺序。我们定义了一个时间箭头推理问题。我们考虑在时间反转下对称或不对称的初始状态和最终状态的条件。我们通过伪密度矩阵时空状态表示时空测量数据。有一个完全正向和迹保持 (CPTP) 的正向过程和一个通过基于反转单元膨胀的替代恢复图获得的反向过程。对于不对称条件,协议确定数据是否与单元膨胀恢复图或 CPTP 图一致。对于对称条件,恢复图产生有效的 CPTP 图,实验可以在任一方向进行。我们还讨论了将该方法应用于 Leifer-Spekkens 或过程矩阵时空状态。
计算神经科学的核心目的是将大量神经元种群的活性与潜在的动态系统联系起来。这些神经动力学的模型理想情况下应既可以解释又适合观察到的数据。低级复发性神经网络(RNN)通过具有可拖动动力学表现出这种解释性。但是,尚不清楚如何最佳地拟合低级别的RNN与由对潜在随机系统进行嘈杂观察的数据组成的数据。在这里,我们建议与随机的低级RNN一起使用各种顺序蒙特卡洛方法。我们在由连续和尖峰神经数据组成的几个数据集上验证了我们的方法,在该数据集中,我们获得的尺寸潜在动力学比当前方法的当前状态较低。此外,对于具有分段线性非线性的低级模型,我们展示了如何有效地识别单位数量中多项式而不是指数成本的所有固定点,从而分析了针对大型RNN的推断动力学分析。我们的方法都阐明了实验记录的基础动力系统,并提供了一种生成模型,其轨迹与观察到的可变性相匹配。
1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国
帕金森氏病(PD)是一种严重的神经系统疾病,其特征是失去自愿运动和运动的大大减慢。传统上归因于环境因素,但最近的研究强调了遗传学在PD发作和进展中的重要作用。这项研究旨在通过分析来自四个数据集(83个PD和53个控制质量Nigra样品)的基因表达数据来鉴定PD中差异表达的基因(DEG)和相关途径,这些数据来自基因表达综合(GEO)数据库。使用GEO2R,我们通过富集确定了常见的DEG并进行了功能注释和KEGG途径富集分析。我们使用StringDB构建了蛋白质 - 蛋白质相互作用(PPI)网络,并通过CytoHubba鉴定了集线器基因。结果显示,在多巴胺能突触和可卡因成瘾等途径中富含18个临界DEG。关键集线器基因包括酪氨酸羟化酶(Th),溶质载体家族18构件A2(SLC18A2)和钾在内部整流的通道亚家族J成员6(KCNJ6)。这些发现提供了对PD分子机制的见解,突出了潜在的生物标志物和治疗靶标。本研究为未来的研究和制定帕金森氏病的有效治疗策略提供了强大的框架。
弱监督的时间动作本地化旨在通过仅将视频级标签作为监督来定位行动区域并同时确定未修剪视频中的动作类别。伪标签生成是解决具有挑战性的问题的一种承诺策略,但是熟悉的方法忽略了视频的自然时间结构,可以提供丰富的信息来协助这种常规过程。在本文中,我们通过推断出明显的摘要 - 特征提出了一种新型弱监督的时间动作定位方法。首先,我们设计了一个显着推理模块,该模块利用了临时邻居片段之间的变化关系以发现显着的摘要功能,这可以反映视频中的显着动态变化。其次,我们引入了一个边界改进模块,该模块通过信息介绍单元增强了显着的摘要功能。然后,引入了一个歧视增强模块,以增强摘要特征的歧视性质。最后,我们采用精致的摘要功能来制定高保真伪标签,可用于进行动作本地化网络的培训。对两个公开数据集进行的实验实验,即,Thumos14和ActivityNet V1.3,与最先进的方法相比,我们所提出的方法取得了重大改进。我们的源代码可在https://github.com/wuli555555/issf上找到。
当人类合作时,他们经常通过言语交流和非语言诉讼来协调自己的活动,并使用此信息推断共同的目标和计划。我们如何建模这种推论能力?在本文中,我们介绍了一个合作团队的模型,其中一个代理人(校长)可以将有关其共同计划的自然语言指示传达给另一个代理人,助手,使用GPT-3作为指导说法的可能性功能。然后,我们展示了第三人称观察者如何通过采取行动和指令的多模式贝叶斯逆计划来推断团队的目标,从而在代理人将采取行动并合理地实现目标的情况下计算后验分布对目标的后验分配。我们通过将这种方法与多代理网格世界中的人类目标推断进行比较来评估这种方法,发现我们的模型的推论与人类的判断非常紧密相关(r =0。96)。与仅采取行动的推论相比,我们发现指示会导致更快,不确定的目标推断,从而强调了言语交流对合作社的重要性。引言为了度过合作生活,像我们本身这样的社会代理人必须将口头和非语言信息同时整合到他人思想的连贯理论中,从而推断出有关共享或个人目标和计划的推论,这些目标和计划可以用作合作行动的指导。是什么解释了人类的这种推论能力,如何才能告知合作AI系统的表现?2017)。我们通过基于认知能力的悠久传统来迈出答案的步骤,即人类语言和行动将其视为贝叶斯解释的过程:一方面,贝叶斯理论理论(BTOM)认为,人类通过推断出这些行动来推断这些行动,这些行动将这些行动推断为这些行动,这些行动将这些行动解释为理性(Baker,saxe,saxe and saxe and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and 2009;另一方面,比率语音法案(RSA)理论表明,人类不仅在裸语义上,而且是他们所暗示的务实意图(Goodman andStuhlmüller2013; Goodman and Frank 2016)。由于这些框架中的每个框架都是根据贝叶斯的范围而在精神状态上提出的,这些状态可能会解释观察到的
自然行为具有冗余性,这意味着人类和动物可以通过不同的控制目标实现其目标。仅根据行为观察,是否可以推断出受试者正在采用的控制策略?这一挑战在动物行为中尤其严峻,因为我们无法要求或指示受试者使用特定的控制策略。本研究提出了一种三管齐下的方法来从行为中推断动物的控制策略。首先,人类和猴子都执行了虚拟平衡任务,可以使用不同的控制目标。在匹配的实验条件下,在人类和猴子中观察到相应的行为。其次,开发了一个生成模型,该模型代表了实现任务目标的两种主要控制策略。模型模拟用于识别可以区分正在使用哪个控制目标的行为方面。第三,这些行为特征使我们能够推断出被指示使用一个或另一个控制目标的人类受试者所使用的控制目标。基于此验证,我们可以从动物受试者中推断策略。能够从行为中准确识别受试者的控制目标,为神经生理学家寻找感觉运动协调的神经机制提供强有力的工具。
Aglieri,G.,Baillie,C.,Mariani,S.,Cattano,C.,Calò,A.,Turco,G.,Spatafora,D.,Di Franco,A.环境DNA有效地捕获了沿海鱼类社区的功能多样性。分子生态学,30(13),3127–3139。https://doi.org/10.1111/mec.15661 Albert,J。S.,Destouni,G.,Duke-Sylvester,S.M.,Magurran,A.E.(2021)。科学家对淡水生物多样性危机的人类警告。Ambio,50,85–94。https://doi.org/10.1007/s1328 0-020-01318 -8 Albert,J.S.,Tagliacollo,V.A。,&Dagosta,F。(2020)。新热带淡水鱼的多样化。生态,进化和系统学的年度审查,51(1),27-53。https://doi.org/10.1146/annur ev- ecols YS-01162 0-031032 BELLEMAIN,E.,CARLSEN,T.,BROCHMANN,C.,COISSAC,COISSAC,E.它是真菌的环境DNA条形码:一种硅方法揭示了潜在的PCR偏见。BMC微生物学,10(189),189。https:// doi。org/10.1186/1471-2180-10-189 Boyer,F.,Mercier,C.,Bonin,A.,Le Bras,Y.,Taberlet,P。,&Coissac,E。(2016年)。obitools:用于DNA ME- TABARCODING的UNIX启发的软件包。分子生态资源,16(1),176–182。https://doi.org/10.1111/1755-0998.12428 Brosse,S.,Charpin,N.,Guohuan,S.,Toussaint,A.A.,Tedesco,P。和Villeger,S。(2021)。Fishmorph:淡水鱼形态特征的全球数据库。(2021)。全球生态和生物地理学,30,2330–2336。https://doi.org/10.1111/GEB.13395 Cantera,I.,Cilleros,K.,Valentini,A.,A.,A.,Dejean,A.,Dejean,T.,Iribar,A. 为热带流和河流中的鱼类库存优化环境DNA采样工作。 科学报告,9(1),3085 M.,Salguero-Gómez,R.,Vásquez-Valderrama,M。和Toussaint,A。 遍布整个生命树的全球功能多样性。 科学进步,7(13),EABF2675。 https://doi.org/10.1126/sciadv.abf2675 Cilleros,K.,Valentini,A. 使用环境DNA(EDNA)在高分化环境中解锁生物多样性和保护研究:圭亚那的测试https://doi.org/10.1111/GEB.13395 Cantera,I.,Cilleros,K.,Valentini,A.,A.,A.,Dejean,A.,Dejean,T.,Iribar,A.为热带流和河流中的鱼类库存优化环境DNA采样工作。科学报告,9(1),3085 M.,Salguero-Gómez,R.,Vásquez-Valderrama,M。和Toussaint,A。遍布整个生命树的全球功能多样性。科学进步,7(13),EABF2675。https://doi.org/10.1126/sciadv.abf2675 Cilleros,K.,Valentini,A.使用环境DNA(EDNA)在高分化环境中解锁生物多样性和保护研究:圭亚那的测试
可穿戴设备提供对生物标志物的连续监测,并介绍了诊断心血管疾病的机会,可能会降低其死亡率。机器学习有望从传感器数据中预测心血管生物标志物,但其使用通常取决于标记的数据集的可用性,该数据集由于技术和道德约束而受到限制。另一方面,生物物理模拟为数据稀缺提供了一种解决方案,但由于固有的模型简化和指定错误,在模型转移到现实中面临挑战。基于混合学习的进步,我们引入了一种方法,该方法结合了植物模拟的脉冲波传播模型,并植根于生物物理模拟,并使用未经标记的现实世界数据训练的校正模型。这种生成模型将心血管参数转换为现实世界传感器的测量值,并且在作为自动编码器进行训练时,还提供了反向转换,将测量值映射到心血管生物标志物。值得注意的是,当使用实际脉冲波数据进行评估时,我们的混合方法似乎仅基于模拟的模型,仅基于推断心血管生物标志物的模拟,开辟了新的途径,用于在数据受限的方案中推断生理生物标志物。
