Loading...
机构名称:
¥ 3.0

预测性编码是皮质神经活动的影响模型。它提出,通过依次最大程度地减少“预测误差”(预测数据和观察到的数据之间的差异)来提供感知信念。该提案中隐含的是成功感知需要多个神经活动的循环。这与证据表明,视觉感知的几个方面(包括对象识别的复杂形式)来自于在快速时间标准上出现的初始“ feedforward扫描”,该快速时间表排除了实质性的重复活动。在这里,我们建议可以将馈电扫描理解为摊销推断(应用直接从数据映射到信念的学习函数),并且可以将经常处理的处理理解为执行迭代推理(依次更新神经活动以提高信念的准确性))。我们建立了一个混合预测编码网络,该网络以原则性的方式结合了迭代和摊销的推论,通过描述单个目标函数的双重优化。我们表明,可以在生物学上合理的神经体系结构中实现了结果方案,该神经体系结构近似使用本地HEBBIAN更新规则,近似于贝叶斯的推理。我们证明,混合预测性编码模型结合了摊销和迭代推断的好处 - 对熟悉数据的快速和计算廉价的感知推断,同时保持上下文敏感性,精度和迭代推理方案的样品效率。此外,我们展示了我们的模型如何固有地敏感其不确定性和适应性地平衡迭代和摊销的推论,以使用最低计算费用获得准确的信念。混合预测编码为视觉感知期间观察到的前馈活动和经常性活动的功能相关性提供了新的观点,并提供了对视觉现象学不同方面的新见解。

混合预测编码:推断,快速和慢

混合预测编码:推断,快速和慢PDF文件第1页

混合预测编码:推断,快速和慢PDF文件第2页

混合预测编码:推断,快速和慢PDF文件第3页

混合预测编码:推断,快速和慢PDF文件第4页

混合预测编码:推断,快速和慢PDF文件第5页