本研究的目的是建立数字人文主义作为互联网和人工智能范式背景下技术变革的驱动力,以人与数字技术之间的社会互动为基础。本文使用一般的哲学和特殊的科学认知方法,特别是分析、综合、概括和建模、结构和功能、敏捷、价值论、协同方法。使用这种方法分析了数字人文主义作为现代发展概念的概念基础,它不仅促进技术进步,而且还考虑到互联网和人工智能在人与技术的社会互动中的挑战和机遇。作者确定了数字人文主义的问题及其克服方法,旨在确保技术发展服务于个人的社会福祉并提高社会生活质量。作者分析了互联网和人工智能时代数字人文主义的新趋势,这些趋势可以提供信息、教育、医疗服务等,使人们的生活更加舒适和富有成效。数字人文主义的概念促进了技术与人类价值观和需求的融合。识别人工智能对技术变革和社会互动的影响有助于创造人道和公正的社会。
摘要 随着元宇宙概念的不断深入,人类在智能技术进步中迈上了新的高度。本文对当前元宇宙中人机交互的研究进行了文献综述,以“元宇宙”、“人机交互”、“虚拟空间”、“虚拟技术”、“三维重建”、“平行宇宙”、“独立身份”、“兴趣获取”、“区块链”等关键词在 Scopus、Web of Science、Google Academic 等数据库的文献中查找相关文章,从 2018 年至 2023 年的 20 000 多篇文献中筛选出近 100 篇关于元宇宙的前沿研究。最后,运用 PRISMA 原则探索和描述元宇宙底层技术的当前应用状态,这些技术包括第五代通信、人机交互、虚拟技术、区块链、3D 重建等。此外,还对人机交互在元宇宙的未来发展做出了预测。评论认为,5G连接的快速推进使元宇宙的概念成为可能,区块链确保了元宇宙虚拟空间中货币交易的安全。人与计算机在虚拟世界中的交互方式将走向“隐形”,换言之,人机交互在数字领域对用户来说是透明的,人与计算机将以自然、平等的方式相处。在交互中,可穿戴设备可以让交互获得身临其境的体验,但它们限制了参与者的行动和感知自由。更人性化的体感连接将在未来获得关注,让人们更接近元宇宙。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
学习多个参与者之间的时空关系对于群体活动识别至关重要。不同的群体活动通常会展示视频中参与者之间的多样化互动。因此,从时空参与者演化的单一视角来建模复杂的群体活动往往很困难。为了解决这个问题,我们提出了一个独特的双路径参与者交互 (Dual-AI) 框架,它以两种互补的顺序灵活地排列空间和时间变换器,通过整合不同时空路径的优点来增强参与者关系。此外,我们在 Dual-AI 的两个交互路径之间引入了一种新颖的多尺度参与者对比损失 (MAC-Loss)。通过帧和视频级别的自监督参与者一致性,MAC-Loss 可以有效区分单个参与者表示,以减少不同参与者之间的动作混淆。因此,我们的 Dual-AI 可以通过融合不同参与者的这些判别特征来增强群体活动识别。为了评估所提出的方法,我们在广泛使用的基准上进行了大量实验,包括排球 [ 21 ]、集体活动 [ 11 ] 和 NBA 数据集 [ 49 ]。所提出的 Dual-AI 在所有这些数据集上都实现了最佳性能。值得注意的是,所提出的 Dual-AI 使用 50% 的训练数据,其性能优于许多近期使用 100% 训练数据的方法。这证实了 Dual-AI 在群体活动识别方面的泛化能力,即使在有限监督的具有挑战性的场景下也是如此。
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
总结本文探讨了专注于互动性的艺术和技术领域的实践,尤其是互动艺术。 div>我们研究了与互动艺术相关的关键概念,例如互动者的作用,互动美学,娱乐性特征和关系架构师以及其他要素。 div>为此,我们考虑了莫里斯·贝纳诺(Maurice Benayoun),Studio azzurro,Marcel-líAntunezRoca和Rafael Lozano-Hemmer等艺术家的互动作品。 div>此外,我们质疑具有暂时的计算机技术,尤其是涉及人造轻度的计算机技术的定义。 div>我们试图通过促进互动概念及其对当前技术进步的反应来促进当前辩论的贡献,其响应于当前的技术进步,这些技术涵盖了一系列旨在模仿人类认知功能的系统。 div>最终,我们提供了有关互动艺术的观点,目的是有助于对艺术和技术中的互动性进行更广泛的了解,作为一种系统性,视觉,技术和美学体验。 div>
最近进步[20,29,30]中的2D图像结构,以方法为例,例如在广泛的文本图像配对数据集中受过训练的扩散模型(例如,Laion-series [31]),在与文本提示符的一致性图像中取得了显着的前进。尽管取得了成功,但实现对图像产生的精确控制以满足复杂的用户期望仍然是严重的挑战。ControlNET [38]通过在特定条件数据集上进行微调修改Foun-odation-2D扩散模型来解决此问题,从而提供由用户特异性输入引导的微妙控制机制。另一方面,尽管有希望的进展[27,35],但与2D图像生成中遇到的那些相比,3D对象的生成更为复杂。al-尽管从透视感中观察到了进步,包括直接3D数据集[10,25]上的3D扩散模型,以及将2D扩散率提升到3D复位(例如NERF [21])通过SDS损失的技术优化[27],没有完全对生成Ob-Ob-ob-ob-ob-jects的控制。对初始文本提示或2D参考图像的依赖严重限制了发电的可控性,并且通常会导致质量较低。文本提示缺乏准确传达复杂3D设计的特异性;尽管2D参考图像可以告知3D重建,但它们并没有捕获3D结构的完整深度,可能导致各种意外的人类。此外,基于2D图像的个性化缺乏直接3D操纵可以提供的灵活性。这些障碍表明需要采取不同的策略。实现可控制的3D发电的直接想法是将控制网络调整为3D生成。但是,该策略遇到了重大障碍:(i)3D的控制信号本质上更为复杂,这使得与2D范式相比,有条件的3D数据集对构成的3D数据集进行了挑战; (ii)3D域中没有强大的基础模型,例如2D [20]的稳定扩散,阻碍了此时开发微调技术的可能性。结果,我们倾向于
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
“ AI的准确而复杂的图片(与其流行的描述竞争)在开始时,由于难以钉住人工智能的精确定义而受到阻碍。……奇怪的是,缺乏精确的,普遍接受的人工智能定义可能帮助该领域以不断加剧的速度发展,开花和前进。AI的从业人员,研究人员和开发人员的指导下是一种粗略的方向感,并且必须“继续下去”。尽管如此,定义仍然很重要,而尼尔斯·尼尔森(Nils J. Nilsson)提供了一个有用的定义:“人工智能是致力于使机器变得聪明的活动,而智能是使实体能够在其环境中适当和远见的质量。” [1]” [2]
摘要本文研究了一个四级三脚架原子系统的相互作用动力学,该系统耦合到Kerr-Medium内的Q呈现的二项式场状态。相互作用模型结合了时间依赖性耦合参数和引人入胜的参数,为描述原子野外相互作用提供了更适应性的框架。特别的重点放在研究Q的形式,时间依赖性耦合参数,失调参数和KERR非线性如何影响系统的保真度属性和线性熵动力学。我们的结果表明,所考虑的参数的影响对原子场纠缠和忠诚有重大影响。这些发现提供了对受控量子系统的宝贵见解,并具有量子信息处理和非线性量子光学器件中的潜在应用。