摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
摘要。人类计算机的交互已从命令行演变为图形,直至有形的用户界面(TUI)。tuis代表了将物理对象纳入数字环境中的新范式,以便为用户提供更丰富,更自然和直观的互动手段。本文回顾了TUIS在认知人体工程学,教育和行业中的应用,并特别强调了TUI在减少认知负荷以及改善保留率和增强解决问题的行为方面可能产生的潜在影响。它涵盖了TUI认知益处的各种案例研究,分布式和体现的认知,可伸缩性和可访问性问题的框架,减少技术障碍以及用户不情愿的方法以及TUI与IoT合并的方式。作者还讨论了TUI如何在智能环境中的网络和控制方面看到巨大的改进。从上述内容中,尽管Tuis承诺与常规GUI有关的巨大好处,但在不同应用程序中的全面利用要求解决成本,适应性和包容性的广泛使用。
摘要:本研究提出了一种新的梦境记录方法,该方法结合了非侵入式脑机接口 (BMI)、思维输入软件和生成式 AI 辅助多模态软件。该方法旨在将 REM 睡眠期间的意识过程升华到半意识状态,并产生用于思维输入的信号。我们概述了一个两阶段的过程:首先,使用生成式 AI 开发多模态软件来补充文本流并生成多媒体内容;其次,采用基于摩尔斯电码的打字方式来简化信号要求并提高打字速度。我们通过建议一种涉及植入 BMI 的用户的控制系统来优化非侵入式信号,从而应对非侵入式 EEG 的挑战。文献综述重点介绍了 BMI 打字、意识过程升华以及生成式 AI 在基于文本提示的思维输入方面的潜力方面的最新进展。
随着深度学习的快速发展,注意机制在脑电图(EEG)信号分析中变得必不可少,从而显着增强了大脑计算机界面(BCI)应用。本文对传统和变压器的注意机制,其嵌入策略及其在基于EEG的BCI中的应用进行了全面综述,并特别强调了多模式数据融合。通过捕获跨时间,频率和空间通道的脑电图变化,注意机制可改善特征提取,表示学习和模型鲁棒性。这些方法可以广泛地分为传统的注意机制,该机制通常与卷积和经常性网络集成,以及基于变压器的多头自我注意力,在捕获长期依赖性方面表现出色。除了单模式分析之外,注意机制还增强了多模式的脑电图应用,从而促进了脑电图与其他生理或感觉数据之间的有效融合。最后,我们讨论了基于注意力的脑电图建模中的现有挑战和新兴趋势,并强调了推进BCI技术的未来方向。本综述旨在为寻求利用注意力机制的研究人员提供宝贵的见解,以改善脑电图的解释和应用。
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
在中枢神经系统病变后,为患有运动障碍的患者开发可靠的辅助设备仍然是非侵入性脑部计算机界面(BCIS)领域的主要挑战。这些方法主要由脑电图造影,并依靠高级信号处理和机器学习方法来提取运动活动的神经相关性。但是,尽管巨大的努力仍在进行,但它们作为有效临床工具的价值仍然有限。我们主张,一个相当被忽视的研究途径在于努力质疑传统上针对非侵入性运动BCIS的神经生理标记。我们提出了一种替代方法,该方法是基于非侵入性神经生理学的最新进展,特定主题的特征特征特征提取了通过(可能是磁脑摄影术 - 优化)的磁磁磁性术记录的感应活动爆发。这条道路有望克服现有限制的显着比例,并可以促进在康复协议中更广泛地采用在线BCI。
脑机接口于五十年前出现,是一种新的通信技术,允许患有严重神经肌肉疾病的患者与外界进行交流和互动。无线技术的快速发展为实验室外的应用打开了大门,例如娱乐、工业、营销和教育领域。越来越多的脑机技术新应用正在涌现,包括物联网。本期特刊将探讨非侵入式和侵入式脑机接口技术的进展、挑战和未来前景。发行范围包括但不限于:BCI 技术、生物医学信号分析、建模 - 神经信息学、生物医学工程、控制和机器人技术、计算机工程、认知科学 - 生物伦理学、神经生物学 - 神经外科、神经康复 - 生物反馈、生物物理学 - 生物化学。
摘要 — 本文介绍了一种新的迁移学习方法,即群组学习,它可以联合对齐多个域(多对多),以及一种扩展方法,即快速对齐,它可以将任何其他域与先前对齐的域组对齐(多对一)。在脑机接口 (BCI) 数据上评估了所提出的组对齐算法 (GALIA),并研究了该算法的最佳超参数值以了解分类性能和计算成本。使用了六个公开的 P300 数据库,包含来自 177 个受试者的 333 个会话。与传统的针对特定受试者的训练/测试流程相比,群组学习和快速对齐均显著提高了分类准确率,但临床受试者的数据库除外(平均改进:2.12±1.88%)。GALIA 利用循环近似联合对角化 (AJD) 来找到一组线性变换,每个域一个,联合对齐所有域的特征向量。群组学习实现了多对多迁移学习,同时不会损害非临床 BCI 数据的分类性能。快速对齐进一步扩展了任何未见域的群组学习,从而允许具有相同属性的多对一迁移学习。前一种方法使用来自先前受试者和/或会话的数据创建单个机器学习模型,而后一种方法利用训练后的模型来处理未见域,无需进一步训练分类器。
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
摘要。脑机接口旨在从用户的大脑活动中获取命令,以便将其传递到外部设备。为此,它可以检测到所谓的“主动”BCI 中的心理状态的自发变化,或“反应性”BCI 中大脑对外部刺激的反应的瞬时或持续变化。在后者中,用户通过感官通道(通常是视觉或听觉)感知外部刺激。当刺激持续且周期性时,大脑反应会达到可以相当容易检测到的振荡稳定状态。我们关注基于 EEG 的 BCI,其中周期性信号(机械或电)刺激用户皮肤。这种类型的刺激会引起体感系统的稳态响应,可以在记录的 EEG 中检测到。表征这种反应的振荡和锁相电压分量称为稳态体感诱发电位 (SSSEP)。研究表明,SSSEP 的幅度会受到特定心理任务的调节,例如当用户将注意力集中在或不集中在体感刺激上时,从而允许将这种变化转化为命令。实际上,基于 SSSEP 的 BCI 可以从直接的 EEG 信号分析技术中受益,就像反应式 BCI 一样,同时允许自定节奏的交互,就像主动式 BCI 一样。在本文中,我们对与利用 SSSEP 的基于 EEG 的 BCI 相关的科学文献进行了调查。首先,我们努力描述 SSSEP 的主要特征和允许调整刺激以最大化其幅度的校准技术。其次,我们介绍了作者实施的信号处理和数据分类算法,以便在基于 SSSEP 的 BCI 中详细说明命令,以及他们在用户实验中评估的分类性能。