工程纳米材料已成为微电子、航空航天、能源生产和储存、毒理学研究和医学应用等多个领域的深入研究焦点。开发新的表征方法和仪器是推动材料研究和开发的关键因素,从而提高产品性能和可靠性。分析挑战包括分析 10 纳米范围内的微小特征,这导致分析量和检测限之间的权衡。二次离子质谱 (SIMS) 是一种强大的表面分析技术,特别是它能够以出色的灵敏度和高动态范围检测所有元素并区分同位素。SIMS 允许获取质谱、进行深度剖析以及 2D 和 3D 成像。安装在最新一代 FIB 平台上的新型离子源(例如气体场离子源 (GFIS)、Cs + 低温离子源 (LoTIS) 或多物种液态金属合金离子源 (LMAIS))的开发为纳米级物体的分析开辟了新的可能性。在 FIB 仪器中添加 SIMS 功能不仅可以提供最高分辨率和灵敏度的成像,还可以提供在图案化和铣削过程中进行现场过程控制的工具 [1,2]。
请勿以超过其最大安全电压(例如 4.2V)的电压对电池进行充电 - 通常由任何电池内置保护电路负责 请勿将其放电至低于其最小安全电压(例如 3.0V)- 通常由任何电池内置保护电路负责 请勿吸收超过电池所能提供的电流(例如约 1-2 C )- 通常由任何电池内置保护电路负责 请勿使用超过电池可承受的电流(例如约 1 C )对电池进行充电 - 通常由任何电池内置保护电路负责,但也可通过调整充电率使用充电器进行设置 请勿在高于或低于特定温度(通常约 0-50 摄氏度)的温度下对电池进行充电 - 有时由充电器处理,但只要充电率合理,通常就不是问题。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
摘要:认可采用环保生物降解塑料作为对塑料污染规模的回应的措施,这对来自自然的材料的创新产品产生了需求。离子液体(ILS)具有破坏生物聚合物的氢键网络,增加生物聚合物链的迁移率,减少摩擦并产生具有各种媒介和机械性能的材料。由于这些品质,IL被认为是增塑生物聚合物的理想选择,使它们能够满足生物聚合材料的广泛规格。该迷你审查讨论了不同的IL塑料对由各种生物聚合物(例如淀粉,壳聚糖,藻酸盐,纤维素)制成的材料的加工,拉伸强度和弹性的影响,并特别涵盖了IL塑料包装材料和生物医学和成型化学物质的材料。还讨论了针对IL生物聚合物的基于IL的增塑剂中的挑战(成本,规模和生态友好性)和未来的研究方向。
由Elsevier出版。这是作者接受的手稿:创意共享归因许可证(CC:BY 4.0)。最终发布的版本(记录的版本)可在线访问:10.1016/j.cej.2024.153827。请参考任何适用的发布者使用条款。
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
1)A。Yoshino,K。Sanechika:日本专利,2128922(1984)。2)A。Yoshino,M。Shikata;日本专利,2668678(1986)3)H.4)UACJ Foil Corporation网站。com/en/products/foil.html> 5)X. Zhanga,T。M. devine。 :电化学学会杂志,153(2006)375-383。 6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。com/en/products/foil.html> 5)X. Zhanga,T。M.devine。:电化学学会杂志,153(2006)375-383。6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。
Cern Beam物理学:Matthew Fraser,Eliott Johnson,Nikolaos Charitonidis,Rebecca Taylor Beam操作:Marc Delrieux,Linac3和Leir Teams Beam仪器:Federico Roncarolo,Inaki Ortega Ruiz,Jocelyn Tan,Jocelyn tan,Jocelly brreth,Aboub eboub eboun damhmun NOLI CHAM和IRRAD:Salvatore Danzeca,Federico Ravotti辐射保护:Robert Froeschl,Angelo Infantino Fluka:Francesco Cerutti,Luigi Esposito知识转移:Enrico Chesta R2E:Ruben Garcia Alia,Matteo Brucoli,Rudy ferrea and gire and giuse and n n and Alia Emriskova,Mario Sacristan,Daniel Prelipcean集团和部门管理:Brennan Goddard,Simone Gilardoni,Markus Brugger
摘要:在电池储能系统(BESS)中部署的锂离子电池(LIB)可以降低发电部门的碳强度并改善环境可持续性。这项研究的目的是使用生命周期评估(LCA)建模,使用来自同行评审的文献以及公共和私人资源的数据,以量化钴的供应链沿供应链沿供应链量化,这是许多类型的LIB中的关键组成部分。该研究试图了解在生命周期阶段的位置,环境影响最高,从而强调了可以提高自由链供应链可持续性的行动。该LCA的系统边界是摇篮到门的。影响评估遵循食谱中点(H)2016。我们假设一个30年的建模期,并在第3年,第7和14年结束时进行了增强,然后在第21年完全替换。在场景中使用了三个炼油厂(中国,加拿大和芬兰),一系列矿石等级(NMC111,NMC532,NMC532,NMC622,NMC811和NCA),以更好地估计其对生命周期的影响。的见解是,根据与矿石等级的逆权法关系,几乎所有途径的影响都会增加;在中国以外的精炼可以将全球变暖潜力(GWP)降低超过12%; GWP对NCA和其他NMC电池化学中使用的钴的影响分别比NMC111低63%和45-74%。按单分析进行分析,海洋和淡水生态毒性是突出的。对于0.3%的矿石等级,加拿大路线的GWP值以58%至65%的速度降低,而芬兰路线的GWP值则下降了71%至76%。统计分析表明,电池中的钴含量是最高的预测因子(R 2 = 0.988),其次是矿石等级(R 2 = 0.966)和精炼位置(R 2 = 0.766),当分别评估相关性时。这里提出的结果指向可以减少环境负担的地区,因此它们有助于政策和投资决策者。