固氮酶催化 N2 还原为铵 (1)。固氮酶由两种蛋白质组成,即二氮酶 (组分 I,Mo-Fe 蛋白) 和二氮酶还原酶 (组分 II,Fe 蛋白) (1, 3)。二氮酶含有一个独特的辅基,即铁钼辅因子 (FeMo-co),由 Fe、Mo 和 S (15) 组成。生化和遗传研究表明,至少有六种 nif (固氮) 基因产物参与了 FeMo-co 的生物合成。含有 nifB、nifN 或 nifE 突变的肺炎克雷伯菌菌株无法合成 FeMo-co (12, 15)。在含有低水平钼酸盐的培养基中,当固氮酶被解除抑制时,nifQ 突变的菌株不会合成 FeMo-co (8)。某些含有 nifH(编码二氮酶还原酶)突变的肺炎克雷伯菌和棕色固氮菌菌株无法积累 FeMo-co(2, 13)。从含有 nifV 突变的肺炎克雷伯菌菌株中分离出的二氮酶表现出改变的底物亲和力和抑制剂敏感性(10)。进一步的研究表明,NifV 突变体在 FeMo-co 合成方面存在缺陷(4)。最近,描述了一种体外合成 FeMo-co 的系统,该系统需要 ATP、钼酸盐、nifB、nifN 和 nifE 的基因产物(17)、二氮酶还原酶(未发表的数据)和同型柠檬酸(6)。肺炎克雷伯菌对同型柠檬酸的积累与功能性 nifV 基因的存在有关,该基因显然编码同型柠檬酸合酶(7)。在解除固氮酶抑制期间,发现高柠檬酸在肺炎克雷伯氏菌培养物培养基中积累 (6)。我们在此报告,向肺炎克雷伯氏菌 NifV 突变体培养基中添加高柠檬酸可治愈该表型。肺炎克雷伯氏菌 UN 是从菌株 M5al 中重新分离的野生型菌株,该菌株最初来自 PW Wilson 的收藏。菌株 UN1991 (nifV4945) 是一种稳定的 NifV 突变体,回复频率为 3 x 10-10(T. MacNeil,博士论文,威斯康星大学麦迪逊分校,1978 年),之前已有描述 (9)。肺炎克雷伯氏菌突变体中的生长和固氮酶解除抑制已被描述 (8)。从肺炎克雷伯菌 (6) 培养物的去阻遏培养基中分离出 (R)-2-羟基-1,2,4-丁烷三羧酸 (高柠檬酸)。将高柠檬酸添加到 UN1991 培养物中,最终浓度约为 83 mg * 升-' (0.4 mM)。用 DEAE-纤维素色谱法 (14) 从菌株 UN、UN1991 和 UN1991 中纯化二氮酶,这些菌株在高柠檬酸存在下已对固氮酶进行了去阻遏。已描述了乙炔和 N2 还原测定
采用情境化和特定于应变的风险评估范例对于在众多行业和应用中持续开发和安全地使用微生物,尤其是细菌至关重要。将细菌物种标记为有害或有益的一种过于简单的方法不适合其与宿主和其他微生物的相互作用的复杂性,在这种情况下,朋友,敌人和无辜的旁观者之间的界线通常不清楚。在人类微生物组研究中已经描述了许多这种细微的关系,这说明了定义细菌安全的固有挑战。任何有效的风险评估框架都必须考虑细菌的利基和环境,拟合度,宿主健康,暴露路线和范围以及应变表征。克雷伯氏菌Vaiicola是一种在世界各地分离的重生土壤细菌,一直是对环境和临床方面越来越感兴趣的主题,并且在商业上已用作数百万英亩的农场。在这里,我们回顾了其人群结构,在临床和环境环境中的相关性,并根据所述风险评估框架作为生物培训剂。
摘要:klebsiella spp。是普遍存在的革兰氏阴性细菌,通常存在于自然环境中,作为人类微生物群的一部分。克雷伯菌参与了许多疾病的发生和发展,有效的抗生素吸引了研究人员的注意。近年来,其多药耐药性,特别是对碳青霉烯和β-内酰胺抗生素,对临床治疗提出了重大挑战。因此,对克雷伯氏菌的抗性机制的全面理解,以及提高检测方法,对于有效控制耐药菌株的传播和指导个性化的临床治疗至关重要。本文系统地回顾了克雷伯氏菌的流行病学特征,抗性机制,检测方法和治疗策略,旨在为该病原体的临床管理提供新的见解。关键词:克雷伯菌,耐药性,检测方法,β-内酰胺,碳青霉烯
ntimicrobial抗药性(AMR)是全球主要的健康问题,与2019年全球估计495万人死亡有关(1,2)。尽管已经对AMR对临床和经济结果的影响进行了广泛的研究,但对AMR对感染反复感的影响相对较少,这是一项重大事件,导致大量疾病,死亡和医疗保健成本(3)。复发在菌血症患者中特别关注,他们通常脆弱并且患有潜在的疾病,因为菌血症与高死亡率和AMR有关(4)。AMR与更大的感染严重程度,治疗衰竭更高的风险以及更长的住院时间有关,所有这些都可能影响复发的风险(5-7)。很少有研究研究AMR是复发性菌血症的潜在危险因素,并且所有研究都限于归因于引起初始感染的同一细菌的感染的复发(8-13)。相反,少数不针对特定细菌物种或患者人群(例如,具有潜在条件的人)和研究危险因素在1年内复发的危险因素并不认为AMR是潜在的危险因素(14-16)。然而,在研究AMR与复发之间的联系时,重要的是要考虑延长的微生物不平衡,即广谱抗生素暴露(即标准细菌治疗)可以诱导宿主微生物组。AMR在初始菌血症发作中可能会增加这种不平衡包括对宿主对定殖和感染的易感性的影响(17)以及对抗生素耐药细菌的选择和持续时间的影响,例如,扩展的谱β-内酰胺酶(ESBL)可能会超过1年 - 产生肠tocteriaceae(18)。
背景:噬菌体疗法显示出治疗抗生素耐药性克雷伯菌感染的希望。识别噬菌体的噬菌体去聚合物酶,使毛发囊囊多糖获得至关重要,因为这些胶囊对生物膜形成和毒力构成了贡献。但是,基于同源的搜索在新型解聚酶发现中存在局限性。目标:开发用于识别和对针对克雷伯氏病的潜在噬菌体解放酶进行排名的机器学习模型。方法:我们开发了Deporanker,这是一种机器学习算法,以蛋白质的可能性为蛋白质。该模型在5种新表征的蛋白质上进行了实验验证,并与BLAST进行了比较。结果:驱动器在识别潜在的解聚酶时表现出较高的性能。实验验证证实了其对新蛋白质的预测能力。结论:Deporanker提供了一种准确且功能上的工具,可以加快对克雷伯氏菌的噬菌体疗法发现的去聚合酶发现。它可作为网络服务器和开源软件提供。可用性:WebServer:https://deporanker.dcs.warwick.ac.uk/源代码:https://github.com/wgrgwrgrght/deporanker
肺炎克雷伯氏菌是机会性病原体,可能导致奶牛乳腺炎。K.肺炎乳腺炎通常的治愈率较差,并且可能导致慢性感染的发展,这对健康和生产都有影响。但是,很少有研究旨在通过牛乳腺炎病例进行全基因组测序来充分表征肺炎。在这里,使用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)和全基因组测序鉴定出与乳腺炎相关的肺炎分离株与乳腺炎相关的肺炎。此外,全基因组序列数据用于遗传分析,并且都与表型AMR测试并行,均与virulenceandantimicrobial耐药性(AMR)预测。四十二个分离株被鉴定为K.肺炎。进行全基因组测序,观察到31种多层次序列类型,这表明这些分离株的来源可能是环境的。分离株的关键毒力决定因素,编码了获得的铁载体,结肠癌和高胶体。其中大多数是缺乏的,除了YBST(编码Yersiniabactin)以六个分离株存在。在整个数据集中,对链霉素(26.2%)和四环素(19%)的表型AMR水平很明显,以及对头孢霉素(26.2%)和新霉素(21.4%)的中间易感性。的重要性是检测两个产生ESBL的分离株,这些分离株表现出对阿莫西林 - 克拉维酸,链霉素,四环素,头孢霉素,头孢菌素,头孢霉素和头孢菌素的抗性性。
多药耐药细菌对公共卫生构成了重要的全球威胁,尤其是在严重的医院感染患者中。值得注意的是,由于它们与人类感染和抗生素耐药基因的转移,克雷伯氏菌和拉乌尔特省属引起了人们的关注。噬菌体疗法最近引起了人们的注意,作为治疗这些感染的一种新方法。但是,这种方法的效率依赖于具有广泛宿主范围的噬菌体。在这项研究中,使用肺炎克雷伯氏菌作为宿主,从河水样品中分离出具有较宽宿主范围的噬菌体K14-2。噬菌体的生物学特性的特征是评估其感染的多样性,杀死曲线,一步生长曲线以及跨不同pH水平和温度的稳定性。形态学分析表明,噬菌体非常类似于肌瘤病毒。宿主范围包括来自克雷伯氏菌,拉乌尔特氏菌和埃希里希氏菌的6种菌株。发现K14-2的基因组是双链DNA,包括175,759个碱基对,GC含量为41.8%。基因组注释揭示了280个蛋白质编码基因,其中96个分配了功能。与K14-2具有最高基因组相似性的噬菌体为vb_kpm-牛奶。基于主要衣壳蛋白建造的系统发育树发现噬菌体属于Straboviridae家族的Slopekvirus属。鉴于这些特征,新型噬菌体K14-2的发现具有广泛的宿主范围,具有增强噬菌体疗法在未来研究中的有效性的潜力。
42003,土耳其科尼亚,通讯作者电子邮件:mevatalay@gmail.com.tr摘要klebsiella物种会导致各种宿主的不同组织中发生感染。在牛健康方面,它是一种众所周知的机会性病原体,在乳腺炎的发病机理中发挥了作用。 实际上,这种细菌可以在牛农场环境中广泛传播,主要是通过乳制品设施和繁殖区域最终导致乳腺炎。 彻底表征生态学剂可以帮助理解机会性感染的发病机理。 在这项研究中,首先通过加利福尼亚乳腺炎测试(CMT)筛选了6个农场的1206头奶牛。 通过CMT发现的样品,来自临床乳腺乳房的样品以及从同一动物的直肠和鼻腔孔获得的Sıwab样品及其周围环境都有有氧培养的,并且通过表型和基因分型来实现分离株的完整鉴定。 研究中还包括一些来自该部门文化库的牛klebsiella菌株。 最后,检测到菌株的抗生素耐药性。 使用机器人挤奶或经典挤奶系统,农场的大肠菌群数量没有差异(p> 0.05)。 在这项研究中检查的农场中克雷伯菌乳腺炎的最高患病率为8.75%。 无论如何,在所有农场的克雷伯氏菌分离株中都可以看到抗co蛋白的耐药性。 分别在直肠和器官起源菌株中看到了最低的12%和最高50%的抗药性。 从乳酸牛奶样品中分离出来。在牛健康方面,它是一种众所周知的机会性病原体,在乳腺炎的发病机理中发挥了作用。实际上,这种细菌可以在牛农场环境中广泛传播,主要是通过乳制品设施和繁殖区域最终导致乳腺炎。彻底表征生态学剂可以帮助理解机会性感染的发病机理。在这项研究中,首先通过加利福尼亚乳腺炎测试(CMT)筛选了6个农场的1206头奶牛。通过CMT发现的样品,来自临床乳腺乳房的样品以及从同一动物的直肠和鼻腔孔获得的Sıwab样品及其周围环境都有有氧培养的,并且通过表型和基因分型来实现分离株的完整鉴定。研究中还包括一些来自该部门文化库的牛klebsiella菌株。最后,检测到菌株的抗生素耐药性。使用机器人挤奶或经典挤奶系统,农场的大肠菌群数量没有差异(p> 0.05)。在这项研究中检查的农场中克雷伯菌乳腺炎的最高患病率为8.75%。无论如何,在所有农场的克雷伯氏菌分离株中都可以看到抗co蛋白的耐药性。分别在直肠和器官起源菌株中看到了最低的12%和最高50%的抗药性。从乳酸牛奶样品中分离出来。出乎意料的是,检测到碳青霉烯(Imipenem)耐药性,并且是环境中分离株中最高的50%。在克雷伯氏菌属中测量了碳青霉苯甲酸耐药性的较低发生。碳青霉烯耐药性进一步验证。关键词:碳青霉烯,奶牛健康,环境污染,机会性感染。引言klebsiella种是革兰氏阴性,杆状,封装,乳糖阳性的(除了肺炎klebsiella pneumoniae subsp。rhinoscleromatis ), non-motile, H 2 S negative, facultatively anaerobic bacteriae (Atalay, 2023; Cheng et al., 2021) Klebsiella pneumoniae ( K. pneumoniae ) causes high morbidity rates and significant economic losses in cases of mastitis (Oliver, Gonzalez, Hogan, Jayarao, & Owens, 2004).牛乳腺炎会导致重大经济损失,并对动物福利产生深远的负面影响。因此,重要的是要成功管理此类感染,包括尤其是在炎症开始或亚临床阶段的信息。K。肺炎通常被认为是机会性病原体之一,不仅引起环境衍生的牛乳腺炎,而且还引起奶牛的上呼吸道感染。这是一个新兴的人畜共患者和食源
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
Park等人使用3XTG-AD小鼠模型研究了肺炎(K.肺炎)感染对阿尔茨海默氏病(AD)病理学的影响。他们发现,肺炎,尤其是在抗生素引起的营养不良的情况下,可以违反肠道屏障,进入血液并浸润大脑,从而导致神经炎症并损害神经行为功能。营养不良是天然人类菌群中存在的生物类型,尤其是肠道中的生物之间的失衡,可能导致许多疾病。肺炎感染的小鼠在海马和额叶皮质等大脑区域中的促炎细胞因子(例如IL-1β,IL-6,IL-8,TNF-α)的水平增加,与神经性障碍相关,与神经性障碍相关。抗生素治疗加剧了K.肺炎的定殖和扩散,突出了营养不良在引起感染和神经炎症反应中的作用。Park等人的研究支持感染,肠道营养不良和AD病理学之间的可能联系,这表明脆弱人群中与医疗保健相关的感染和抗生素使用可能会通过肠脑轴加速神经变性[1]。