35.1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 35.2光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 35.1.2 bacuum phototettors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 35.2.2气态光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。6 35.2.3固态光子检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 35.2.4超导光子检测器。。。。。。。。。。。。。。。。。。。。。。。。8 35.3有机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.1闪烁机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.2塑料闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。11 35.3.3有机玻璃闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.3.4液体闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.4无机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.5 Cherenkov探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 35.6气态探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 35.6.1气体中的能量损失和电荷运输。。。。。。。。。。。。。。。。。。。。22 35.6.2多线比例和漂移室。。。。。。。。。。。。。。。。。。27 35.6.3高率效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 35.6.4微图案气体探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。32 35.6.5时预测室。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。32 35.6.5时预测室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 35.6.6过渡辐射探测器(TRD)。。。。。。。。。。。。。。。。。。。。。。42 35.6.7电阻板腔室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 35.7 Lar Time投影室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.2一批超纯液体氩气。。。。。。。。。。。。。。。。。。。。。。。。52 35.7.3充电和光信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 35.7.4 Lar TPC拓扑。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 35.7.5数据采集和事件重建。 。 。 。 。 。 。 。 。 。53 35.7.4 Lar TPC拓扑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 35.7.5数据采集和事件重建。。。。。。。。。。。。。。。。。。。。57 35.7.6发展。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 35.8半导体检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 35.8.1半导体中的信号产生。。。。。。。。。。。。。。。。。。。。。。。59 35.8.2结孔检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 35.8.3带有结构化电极的检测器。。。。。。。。。。。。。。。。。。。。。。。63 35.8.4硅检测器的精确时机。。。。。。。。。。。。。。。。。。。。。。。66 35.8.5硅检测器中的辐射损伤。。。。。。。。。。。。。。。。。。。。。。68 35.9低噪声检测器读数。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>71 35.9.1主噪声起源。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.2等效噪声分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.3时序措施。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 35.9.9.4数字信号处理。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。78 35.9.5什么时候使用什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10量热计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10.1引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79
缩写: CH1 CH:穿越欧洲之前的测量 CH2 CH:穿越欧洲之后的测量 DE DE:在风洞中进行的测量 DE Pipe DE:在管道中进行的测量(仅限 Mini) IT Lar IT:在大型风洞中进行的测量 IT Sma IT:在小型风洞中进行的测量 IT Arm IT:在旋转臂上进行的测量 IT Tank IT:在油箱中的托架上进行的测量 JP WT JP:在风洞中进行的测量 JP Car JP:在牵引托架上进行的测量 NL Raw NL:未针对阻塞效应进行校正 NL Cor NL:针对阻塞效应进行校正 US Low US:在低速风洞中进行的测量 US High US:在高速风洞中进行的测量 US S Low US:在低速风洞中制作的备用风速计的测量(仅限微型) US S High US:在高速风洞中制作的备用风速计的测量(仅限微型)。
Nour Jalal Abdulameer,MárkAladi,L.Balázs,BalázsBánhelyi,TamásS。Biró,AttilaBonyár,AlexandraBorók,Larissa Bravina,IstvánCsarnovics,lászlóPálcálcálsai,mrancan chris a. Scsörgő,OlivérFekete,L。Himics,RománHolomb,L。Juhász,GáborKasza,JuditKámán,MiklósKámán,RebekaKovács,S.Kökényesi NesMolnár,Anton Motornenko,ÁgnesNagynéSzokol,IstvánPapp,PetraPál,BélaRáczkevi,PéterRácz,JohannRaácz,Johann Rafelski, Zántó,AndrásSzenes,Karolis Tamosiunas、Nóra Tarpataki、Bálint Ferenc Tóth、Emese Tóth、Dávid Vass、Miklós Veres、Shereen Zangana、Károly Osvay、P. Varmazyar、Konstantin Zhukovsky,(NAPLIFE 合作)~ 50 名参与者
摘要 边缘人工智能(Edge AI)技术有助于避免漏洞,同时受益于当今广泛使用的云技术的优势,尤其是人工智能和大数据。在将系统转移到云的情况下,云方法中出现了敏感信息保护和高带宽等需求。边缘AI在满足该领域需求的同时,为敏感数据安全性和减少系统流量等问题提供了解决方案,当与数字孪生和自主系统技术一起使用时,可以为军事领域的项目提供新的视角。在本研究中,我们从技术上评估了使用边缘AI技术的“虚拟环境中的部队机器学习(FIVE-ML)”仿真系统,并分析了使用该技术获得的结果。已经确定当前的工作处于边缘AI调平系统的第2级,并且使用边缘AI时,性能(在时间和准确性方面)提高了54%。此外,模拟系统的击中准确率也有所提高,达到34%。关键词:航空航天仿真、人工智能、数字孪生、边缘人工智能、边缘计算 Öz Edge AI 技术、günümüzde özellikle yapay zekâ ve büyük veri ile yaygın olarak kullanılan bulut teknolojilerinin avantajlarından yararlanırken güvenlik açıklarının önlenmesine deyardımcı olmaktadır。Sistemlerin buluta taşınması durumunda, hassas bilgilerin korunması ve yüksek bant genişliği gibi ihtiyaçlar ortaya çıkmaktadır.Bu alandaki ihtiyaçları karşılarken hassas verilerin güvenliği ve sistem trafiğinin azaltılması gibi konulara çözüm sunan Edge AI, dijital ikiz ve otonom sistem ile birlikte kullanıldığında özellikle Askeri alandaki projelere Yeni bir bakış açısı sunabilmektedir。Bu çalışmada edge AI 技术模拟系统的技术。但技术是可以分析的。Edge AI 系统已完成 2. 旧版测试,Edge AI 已完成 %54 表演艺术。Ayrıca simülasyon sisteminde hedefi vurma isabet oranı da %34 oranında artırılmıştır。Anahtar kelimeler : Havacılık simülasyonu、Yapay zekâ、Dijital ikiz、Uç yapay zeka、Uç hesaplama
公共外交是国家利用软实力工具在社会、文化和政治上相互影响而出现的一个新的外交领域。俄罗斯和土耳其频繁使用这一新的外交工具,特别是自冷战结束以来。两国已经并将继续使用公共外交这一新的外交领域,在巴尔干半岛这一地缘政治安全走廊的重要地区采取共同的身份工具。在国际关系理论中,公共外交是从现实主义、自由主义和建构主义的角度来评价的。文章通过同一日期成立、目的相似的俄罗斯世界基金会和尤努斯·埃姆雷研究所,对俄罗斯和土耳其如何使用公共外交工具进行了比较分析。虽然对保加利亚、塞尔维亚和希腊(俄罗斯世界基金会最具影响力的国家)与俄罗斯的关系进行了更详细的审查,但也提供了有关俄罗斯世界基金会在其他巴尔干国家活动的一般信息。通过对俄罗斯活动领域的内容分析,俄罗斯从现实角度出发,通过公共外交来恢复其全球和地区形象,赢得战略空间。土耳其利用公共外交与地区因素共同行动,以维护和加强其历史和文化统一。土耳其巴尔干公共文凭
*作者要感谢Wendy Cunningham,Ximena del Carpio,Simeon Djankov,Cem Mete,Çağlarözden,Truman Packard,Brenda Samaniego,Sirma Demir Seker和Hernan Winkler对本文早期版本的有用评论。他们还感谢劳工经济学家协会2019年和2020年年度会议,2019年CEPR/IGC/ILO/GSEM劳动力市场会议发展中国家,2019年北美计量经济学会年会,2020 Conaticletric Soconitric Society of Conaticletric Society Consoce,3 RDOIS和美国发展会议和美国经济协会年度会议202年的Insections和建议。Merve Demirel提供了出色的研究帮助。,我们深切感谢土耳其共和国工业技术部的ElifTuğçeçınar和她的团队,因为它使企业信息系统(EIS)提供了企业信息系统(EIS),并在该部门使用Microdata的持续支持。本文报告的发现应视为作者的唯一责任;它们不一定代表世界银行的官方观点,也不能以任何方式归因于土耳其政府的任何机构。†世界银行,通讯作者。电子邮件:lbossavie@worldbank.org‡世界银行§世界银行电子邮件:lbossavie@worldbank.org‡世界银行§世界银行
摘要:深层中微子实验(Dune)是旨在研究中微子振荡的下一代实验。其长基线配置将利用近检测器(ND)和位于约1300 km的距离检测器(FD)。FD将由四个液体氩时间投影室(LAR TPC)模块组成。光子检测系统(PDS)将用于检测中微子相互作用后检测器内部产生的闪烁光。PDS将基于耦合到硅光电层(SIPM)的光收集器。已经提出并生产了不同的光发音技术,以确定最佳样本以满足实验要求。在本文中,我们介绍了Hamamatsu Photonics K.K.生产的孔线结合(HWB)MPPC样品的验证活动的过程和结果。(HPK)用于沙丘实验,称它们为“ sipms”。报道了在低温温度(77 K)处进行表征的方案。我们介绍了进行下调标准以及在选择运动中获得的结果,以及对sipms噪声的主要来源的研究,包括研究该领域新观察到的现象。
无菌原理:包装材料供应商以单袋设计提供已用环氧乙烷 (ETO) 或蒸汽预灭菌的 RTU 容器。通过使用紫外线闪光,特别是在光谱的 UV-C 范围(100 - 280 nm),微生物会改变其分子结构并断裂共价键。其原因是 DNA 和蛋白质的吸收光谱位于 200 至 300 nm 之间。有两种方法可以消灭微生物:1) 光热效应(温度升高直至爆炸)和 2) 光化学效应(DNA 和蛋白质的改变)。
第1天:转染。将GRNA - 黎病毒质粒与病毒包装质粒一起转染到HEK293T细胞中。第2天:第一批病毒的收获。早上用新鲜培养基代替转染介质,并在8小时后收集第一批细胞上清液。第3天:第二批和第三批病毒的收获。分别在清晨和午后收集细胞上清液。使用45μm的孔滤器过滤慢病毒上清液,以去除所有剩余的细胞碎片。立即使用它或等分病毒存储在-80°C下。3。病毒感染。
在这项研究中,从局部来源分离出的9种芽孢杆菌菌株,通过小麦,5个杆菌,1个假单胞菌和1个stenotrophomonas菌株检查了从局部来源鉴定出的PGPR(促进根瘤菌生长)的特性。它是用无菌小麦种子以二元和三重寿司组合的形式处理的,该组合是由从每种细菌菌株和相等体积的每个细菌菌株中制备的生物接管剂(10 8 COB/mL)形成的。无菌玉米种子被放入盆中,并以二进制,三重和四重奏组合的形式接种生物染料后,以单个菌株和相等的体积混合。试验被设计为三个重复。在受控条件下,小麦和玉米种子的发展尝试分别持续了30和45天。与对照组相比(B. uttilis b.3.p.5 + B.枯草脂蛋白1.19 + B.枯草厂36.5)和(B. uptilis b.3.p.5 + B.单纯b.1.2.k),用于埃及(B.枯草1.19 + B.单纯B.1.2.2.2.k + B. Megaterium 42.3)和(B. Megaterium 42.3 + B.枯草厂36.5 + S. Rhizophila 118.1 + P.氯藻氯藻P-102-B)。决定。关键字:PGPR,协同作用,小麦,玉米,种子开发