脑卒中又称脑血管意外,是一种常见的心脑血管疾病,分为缺血性脑卒中和出血性脑卒中等不同类型。根据世界卫生组织发布的数据,每5秒就有1人中风,每年约有1500万人在脑卒中后出现脑损伤[1]。约85%的脑卒中幸存者存在上肢功能障碍,其中60%以上的患者经治疗后留下持续性手部功能障碍且无法独立生活[2]。研究表明,脑卒中后上肢运动功能障碍的常见临床表现包括肌肉无力、肌肉痉挛、肌肉张力改变,导致患者难以进行日常活动,如伸手、捡起、移动、穿衣等,从而影响患者的生活质量[3,4]。脑卒中后上肢精细运动功能障碍是脑卒中治疗的必要条件,也是降低脑卒中致残率的关键。目前,最常用的康复疗法包括物理因素治疗、运动与作业治疗、代偿训练、生物反馈、运动意象疗法、健侧C7神经根移位、针刺、按摩等[5,6]。研究表明,手针疗法可以刺激人体神经,改善患者运动状态,对患者的康复和独立行动有积极的作用[7-10]。根据2018年发布的中国急性缺血性脑卒中诊治指南,可根据具体情况和患者意愿选用针刺治疗(Ⅱ级推荐,B级证据)[11]。可见,针刺治疗脑卒中后上肢运动功能障碍的疗效已经得到临床专家的认可。目前,现有的关于手针治疗脑卒中后上肢运动功能障碍的循证研究的证据级别都不高。这是因为现有研究存在样本量小、随机化实施不严格、盲法程度不同、对照组使用非标准干预措施以及缺乏高质量随机对照试验 (RCT) 证据等局限性。因此,本研究旨在分析 RCT 的结果,以确定手针治疗中风后上肢运动功能障碍的疗效和安全性。这将为手针治疗中风后上肢运动功能障碍的疗效提供可靠的循证阐明。本研究的预计完成日期为 2021 年 10 月 15 日。
目的:本研究旨在评估脑卒中患侧上肢功能增强对下肢步态的影响。方法:将40例符合条件的脑卒中患者随机分为对照组和治疗组,每组20例。两组患者在治疗前均接受基于人工智能和计算机视觉的动态评估。评估主要分析步态周期中肩肘关节的活动范围,以及患侧的各种步态参数(如步长、步速、站立相百分比等)。评估后,对照组接受常规康复治疗。结果:结果显示,治疗前两组患者无明显差异。但治疗后,治疗组患者患侧肩肘关节活动度有明显改善(p<0.05),而对照组患者仅有轻微改善,但无统计学意义(p>0.05)。结论:患侧上肢功能的改善似乎也对步态恢复有积极的影响。但值得注意的是,观察期相对较短。需要进一步研究来确认这种影响是否能长期持续。
1 1身体和康复医学系,预防与康复中心,心脏血管中风研究所,三星医学中心,三角洲大学医学院三星医学院,韩国首尔共和国康尔共和国康尔共和国康尔共和国康复医学系2号,国立大学医学院塞尔国立大学医学院,耶利亚大学医学院,医学院。韩国首尔,韩国首尔,4康复医学系,圣文森特医院,韩国天主教大学,韩国南部,韩国共和国,康复医学院5韩国首尔,1身体和康复医学系,预防与康复中心,心脏血管中风研究所,三星医学中心,三角洲大学医学院三星医学院,韩国首尔共和国康尔共和国康尔共和国康尔共和国康复医学系2号,国立大学医学院塞尔国立大学医学院,耶利亚大学医学院,医学院。韩国首尔,韩国首尔,4康复医学系,圣文森特医院,韩国天主教大学,韩国南部,韩国共和国,康复医学院5韩国首尔,
基于脑机接口 (BCI) 的训练有望用于治疗上肢瘫痪的中风患者。然而,大多数中风患者接受的综合治疗不仅包括 BCI,还包括常规训练。本研究的目的是研究在中风亚急性期接受包括 BCI 训练在内的综合治疗后大脑功能网络的拓扑变化。25 名住院的中度至重度 UL 瘫痪亚急性中风患者被分配到两组中的一组:4 周综合治疗,包括常规和 BCI 训练(BCI 组,BG,n = 14)和 4 周常规训练(无 BCI 支持)(对照组,CG,n = 11)。在训练前后进行功能性 UL 评估,包括 Fugl-Meyer 评估-UL (FMA-UL)、动作研究手臂测试 (ARAT) 和 Wolf 运动功能测试 (WMFT)。通过静息态功能磁共振成像对 BG 中的功能连接 (FC) 进行神经影像学评估。训练后,与基线相比,两组的所有临床评估(FMA-UL、ARAT 和 WMFT)均显著改善(p < 0.05)。同时,BG 的 FMA-UL(p < 0.05)、ARAT(p < 0.05)和 WMFT(p < 0.05)功能改善更明显。同时,BG 的 FC 在整个大脑范围内增加,包括颞叶、顶叶、枕叶和皮层下区域。更重要的是,训练后,体感联合皮层和壳核之间的半球间 FC 增加与 UL 运动功能呈强正相关。我们的研究结果表明,包括 BCI 训练在内的综合康复比常规训练更能增强亚急性卒中患者的 UL 运动功能。亚急性卒中患者脑功能网络拓扑的重组可以增强
抽象背景:沉浸式虚拟现实(VR)基于运动控制训练(VRT)是一种创新的方法,可改善中风患者的运动功能。当前,沉浸式VRT的结果指标主要关注运动功能。但是,血清生物标志物有助于检测精确和细微的生理变化。因此,这项研究旨在确定中风患者对炎症,氧化应激,神经可塑性和上肢运动功能的影响。方法:三十例慢性中风患者被随机分为VRT或常规职业治疗(COT)组。血清生物标志物,包括白介素6(IL-6),细胞内粘附分子1(ICAM-1),血红素氧酶1(HO-1),8-羟基-2-脱氧鸟苷(8-HOHDG)(8-OHDG),以及脑源性神经亲子性因子(BDNF)的氧化;还使用了临床评估,包括上肢运动的主动运动范围和上肢(FMA-EU)的FUGL-MEYER评估。双向混合方差分析(ANOVA)用于检查干预措施(VRT和COT)的影响以及时间对血清生物标志物和上肢运动功能的影响。结果:我们发现血清IL-6(p = 0.010),HO-1(p = 0.002),8-OHDG(p = 0.045)以及临床评估的所有项目/子量表(p s <0.05)(p s <0.05),除了FMA-EU-UE协调/速度(p = 0.055)外。然而,仅在Arom-elbow扩展(p = 0.007)和Arom-Forearm Prination(p = 0.048)的项目中存在显着的组效应。此外,在FMA-EU-ue-Shoul-shoul-der/erbow/前臂的项目/子量表中存在时间和群体之间的显着相互作用(p = 0.004),fma-ue-ue-total评分(p = 0.008)和arom-shoulder屈曲(p = 0.001)。结论:这是第一个使用血清生物标志物作为外来措施结合浸入式VRT有效性的研究。我们的研究表明了有希望的结果,可以支持在慢性中风患者中进一步应用商业和身临其境的VR技术。
摘要:这项研究旨在开发与步态相关的运动图像(MI)基于较低LIMB外骨骼的基于与基于步态相关的运动图像(MI)的混合脑机构界面(BCI)控制器,并研究控制器在包括标准,Gait-Forwhard和Sit-Down的实际情况下的可行性。在研究中使用过滤库的公共空间模式(FBCSP)和基于信息的最佳个人特征(MIBIF)选择来解码MI脑电图(EEG)信号,并提取特征矩阵作为支持向量机(SVM)分类的输入。连续的眼光开关在操作下LIMB外骨骼时依次与EEG解码器结合。十个主题在OfflINE(培训)和在线方面都表现出80%以上的精度。所有受试者通过开发的实时BCI控制器穿着下LIMB外骨骼成功完成了步态任务。与手动智能手表控制器相比,BCI控制器的时间比为1.45。开发的系统可能有可能是具有神经系统疾病的人,他们可能有效地操作手动控制。
每年都有 3000 多名新发病例 [2],脑瘫是全球第三大致残原因 [3]。据估计,全球每 1,000 名新生儿中就有近 2-3 名脑瘫患者 [4,5]。创伤性脑损伤是全球另一大致残原因,每年有 6900 万人幸存 [6]。站立和行走困难是脑损伤的主要后果之一。例如,超过 63% 的中风幸存者患有半轻度至重度运动和认知障碍 [7],30%-36% 的人无法在没有辅助辅助的情况下行走 [8,9]。这会导致独立活动能力的丧失,限制社区参与和社会融合,从而引起继发性健康状况[10]。不同程度脑损伤的人会表现出常见的运动障碍,如瘫痪、痉挛或肌肉协同异常,从而导致代偿性运动和步态不对称[11-15]。这种病理性步态会妨碍熟练、舒适、安全和代谢高效的行走[16]。脑损伤后的恢复过程需要几个月到数年,并且神经系统损伤可能是永久性的[17]。有强有力的证据表明,早期、强化、重复的任务和目标导向训练(逐步适应患者的损伤程度和康复阶段)可改善功能性步行结果 [11, 18 – 23]。然而,由于资源有限和配对的异质性,物理治疗师很难提供所需的训练强度和剂量,同时提取定量信息以最大限度地提高特定患者的功能性步行能力。机器人技术在脑损伤患者的步态康复中可以发挥重要作用。机器人可以执行各种各样的任务,例如,高强度的行走、坐下/起坐或在斜坡上行走。一些机器人控制器还可以促进患者在训练过程中的主动参与和投入,例如通过改变辅助力量的水平[24,25]。训练的高重复性和强度,以及患者的参与,被列为诱导神经可塑性和运动学习的关键因素[26-28]。重要的是,临床证据表明,机器人和传统康复训练相结合对独立行走的能力、行走速度和行走能力有积极影响,尽管目前还没有确凿的证据表明机器人康复优于传统疗法[29-33]。下肢外骨骼可促进任务导向的重复运动、肌肉强化和运动协调,这已被证明对能量效率、步速、和平衡控制[34,35]。与其他机器人相比,外骨骼
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
有助于脚踝植物的外骨骼可以改善运动的能源经济。表征这些减少能源成本背后的联合级别机制可以使人们更好地了解人们如何与这些设备互动,并改善设备设计和培训协议。我们检查了对经过延长协议训练的外骨骼使用者中对外骨骼辅助的生物力学反应。在未辅助关节处的运动学通常没有辅助不变,这在其他踝部外骨骼研究中已经观察到。峰值plotharflexion角的峰值随着植物的援助而增加,尽管生物关节扭矩和全身净代谢能量成本降低,但仍会增加总和生物机械能力。脚踝plantarflexor活性也随着辅助而减少。对无助的关节作用的肌肉也增加了大量援助的活动,并应长期使用以防止过度损害进行调查。
ABS道目标:研究基线上肢运动障碍水平与运动中风障碍水平的关系与低频重复经颅磁刺激(LF-RTMS)和常规康复治疗的慢性中风患者之间的关系。材料和方法:在这项回顾性研究中,根据基线FUGL-MEYER上肢运动障碍量表(FM-ul)分数,将48名慢性中风患者分为3个亚组:SE- VERE(n = 16),严重至中度(n = 15),以及中度到中间(n = 17)。比较组的运动增益(FM-ul的变化)。结果:在常规康复中,在所有统计学意义的运动中,在所有统计上显着的运动增长中,在上肢运动的所有级别上,从严重到中度到中型的统计级别[0.00(0.0)(0.0)(0.0),在常规康复中的静止恢复之前,立即进行了10次LF-RTMS治疗(总计12,000个脉冲,占休息运动阈值的90%)。 2.0(1.0至3.75),p = 0.002;和2.0(0.0至4.50),p = 0.006]。两组之间的运动增益在统计学上也有显着差异(p = 0.027)。严重的 - 中度和中度至中间组中的中值运动率显着大于严重组中的运动型(调整后的P值<0.05)。结论:这项研究的结果表明,不管上肢运动障碍的水平如何,LF-RTMS之后进行常规康复的LF-RTM可能会为慢性中风患者的上肢运动恢复。关键字:慢性中风;上肢运动障碍水平;低频重复经颅磁刺激;运动增益然而,应根据在上肢运动障碍的基线水平根据其基线水平对受试者分层的强大的对照试验中,应研究LF-RTMS在隔离中具有临床意义的效果。