传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。
•简化了遵守CDISC标准的过程,从而使合规性的途径更加直接。•增强用户对CDISC标准的理解,支持明智的决策。•整合大量数据以提供全面的见解和建议,增强决策
多级分层分类(MLHC)解决了在复杂的多层类结构中对项目进行分类的挑战。但是,传统的MLHC分类通常依赖具有n个独立输出层的骨干模型,这些模型往往会忽略类之间的层次关系。这种疏忽可能导致违反潜在分类法的前提不一致。利用大型语言模型(LLMS),我们提出了新颖的分类学限制过渡性LLM-无知框架进行多模态分类。这种进步的基石是模型在层次级别上执行一致性的能力。我们对MEP-3M数据集的评估 - 与常规LLMS结构相比,具有各种层次级别的多模式电子商务产品数据集具有显着的性能。
Web 1.0被称为连接Internet,Web 2.0作为促进数据集的数据出处,可作为公共“信息互联网”和Web 3.0的输入,可以定义为“ LLM Internet of LLM培训模型,全球价值的大规模干预措施”。在这里,我们需要在分散Web的上下文中提到Web 3.0。这些无法通过几乎没有架构来启用全球运营商的数据谱系和数据出处的作用来实现,而应包括在宽Web中进行系统的大修。基本上,数据的所有权属于实施的人:生成和使用它。每个人都有平等的权利和访问数据的权利,因此。全世界基于基于数据的标准化,促进了数据民主化。数据存储的广泛网络分散化,其所有者对货币数据的平等权利,ii。强大的实践跟踪守则和从源到原点的数据追踪,建立SSOT是基于Web 3.0架构的关键原理。此外,基于区块链的III。详尽的社区支持,例如开发人员,论坛,在线技术,进一步有助于完成社区的这些关键原则和特征等。Web 3.0。但是,这样的干预措施可能需要数年才能实施。在我们参考数据出处一词(也称为私人LLMS的数据案例)时,可以通过行业的一致努力来完成同样的工作,它是指几个月来占有的记录道路。这降低了数据操纵的风险。一块数据的起源以及它已经从目前的位置移到了位置。2数据出处可确保有可追溯的历史记录,因为企业希望提高私人数据从其原始源到当前部署的地方的有效性。llm,我们建议它实施分散的数据架构,并在企业内的Web 3.0原理上设置SSOT,并且随着区块链带来分散性,可以在其拥有的生态系统中分发数据。多个位置,从而确保在单个实体上没有数据浓度。区块链带来这将允许私人LLMS解决幻觉并防止SSOT元素中的错误。该区块链提供的这种不变性促进了输出和伪造,如本文的其余部分所述。透明度并确保数据是准确且不变的,并允许跟踪数据。
除了(Little)OpenAI可能向我们隐瞒的内容外,我们都知道(大致)(llms)的大型语言模型(例如ChatGpt)工作(其庞大的文本数据库,统计数据,矢量表示和大量参数,下言培训等)。但是,我们当中没有人能说(衷心地),我们对Chatgpt所证明的能力对这些资源的作用并不感到惊讶。这甚至驱使我们中的一些人得出结论,Chatgpt实际上理解了。它不正确。,但我们了解它如何做能做的事情也不正确。我会建议一些有关良性“偏见”的预感 - 在LLM量表上出现的会议约束可能会帮助ChatGpt的表现比我们预期的要好。这些偏见是语言本身,LLM量表的本质上固有的,它们与Chatgpt缺乏的是紧密相关的,这是直接的感觉运动接地,可以将其单词与引用者及其命题联系起来。这些收敛性偏见与(1)间接言语基础在直接感觉运动基础上的寄生虫有关,(2)语言定义的循环,(3)语言生产和理解的“镜像”,(4)在LLM量表上以LLM量表的命题中的标志性,((5)人类的“人类知识)”,也许是“类别”的“类别”。乔姆斯基的猜想是关于思想定律。博览会将以与Chatgpt-4的对话形式。
生成AI提供了一种简单的,基于及时的替代方案,用于微调较小的BERT风格的LLM,以进行文本分类任务。这有望消除对手动标记的培训数据和特定于任务模型培训的需求。但是,仍然是一个悬而未决的问题。在本文中,我们表明,较小的,微调的LLM(仍然)始终如一,明显优于较大的零射击,这促使文本分类中的模型。我们将三种主要的生成AI模型(与GPT-3.5/GPT-4和Claude Opus)与多种分类任务(情感,批准/不赞成,情绪,情感,党派职位)和文本类别(新闻,推文,演讲,演讲)中进行了比较。我们发现,在所有情况下,使用特定于应用程序的培训数据进行微调均可取得卓越的性能。为了使更广泛的受众更容易访问这种方法,我们将提供一个易于使用的工具包。我们的工具包,伴随着非技术分步指导,使用户能够以最小的技术和计算工作来选择和调整类似BERT的LLM,以完成任何分类任务。
model.activations_checkpoint_granularity selective \ model.activations_checkpoint_num_layers=null \ model.activations_checkpoint_method=uniform \ model.optim.name=fused_adam \ model.optim.lr=1e-4 \ model.answer_only_loss=True \ model.data.train_ds.file_names = $ {train_ds} \ model.data.validation_ds.file_names = $ {有效_DS} \ date.data.data.data.test_ds.file_names model.data.train_ds.concat_sampling_probabilities=${CONCAT_SAMPLING_PROB S} \ model.data.train_ds.max_seq_length=10000 \ model.data.validation_ds.max_seq_length=10000 \ model.data.train_ds.micro_batch_size=1 \ model.data.data.train_ds.global_batch_size = 128 \ model.data.validation_ds.micro_batch_size = 1 \ date.data.validation_data.validation_data.global_batch_size = 128 model.data.validation_ds.num_workers = 0 \ model.data.data.test_ds.num_workers = 0 \ model.data.data.validation_metric.name = loss = lose \ model.data.data.data.data.test_ds.tes.test_metric.name = loss exp_manager.checkpoint_callback_params.mode = min \ exp_manager.explitic_log_dir = $ {output_dir} \ exp_manager.resume.resume.resume_exists = true \ exp_manager.resmanager.resume_no_no_no_no_checkpoint = true_no_checkpoint = true \ exp_managpoint \ exp_managecpoint = exp_manager.checkpoint_callback_params.monitor=validation_loss \ ++exp_manager.checkpoint_callback_params.save_best_model=False \ exp_manager.checkpoint_callback_params.save_nemo_on_train_end=True \ model.save_nemo_on_validation_end=False
Langchain是一个针对由语言模型驱动的制作应用程序量身定制的动态框架。iv,它使应用程序具有上下文感知,并在语言模型和上下文源之间建立连接,例如及时说明,示例输入或其他内容以进行接地响应。此外,Langchain可以推理,允许语言模型根据上下文推断最佳答案并做出明智的决策。Langchain具有模块化组件,可为各种应用程序和搁置链提供一系列实现,从而提供结构化框架,以完成特定的高级任务。这种组合简化了项目的启动和复杂的应用程序的自定义,从而增强了Langchain的适应性。
我们介绍了第一代推理模型,即DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero,一种通过大规模增强学习(RL)训练的模型,没有超级微调(SFT)作为初步的步骤,表现出显着的推理能力。通过RL,DeepSeek-R1-Zero自然出现,具有许多强大而有趣的推理行为。但是,它遇到了挑战,例如不良的可读性和语言混合。为了解决这些问题并进一步提高了推理性能,我们引入了DeepSeek-R1,该问题在RL之前结合了多阶段培训和冷启动数据。DeepSeek-R1在推理任务上实现与OpenAI-O1-1217相当的性能。为了支持研究社区,我们开放源DeepSeek-R1-Zero,DeepSeek-R1和六种密集的型号(1.5b,7b,8b,8b,14b,32b,32b,70b),根据Qwen和Llama蒸馏出了DeepSeek-R1。
在大型语言模型(LLMS)中(也称为charcter概括)中可自定义的角色扮演,人们对其在开发和部署角色扮演的对话代理方面的多功能性和成本效率引起了人们的关注。本研究探讨了一种大规模数据合成方法,以配备LLM具有特征生成能力。我们首先使用角色中心的角色综合大规模角色概况,然后探索两种策略:响应重写和响应生成,以创建与角色一致的教学响应。为了验证我们的合成教学调谐数据的有效性以进行角色泛化,我们使用Llama-3 8B模型执行监督的微调(SFT)。我们表现最好的模型增强了原始的Llama-3 8b指导模型,并实现了与角色扮演对话的GPT-4O模型相当的性能。我们发布了1个合成字符和指导对话,以支持公共研究。