在执行系统中,更多的电动或全电动系统正在取代传统的液压系统。如今提供的电动系统已经通过使用无刷大功率电机在重量上具有竞争力。此外,电力系统有助于克服漏电和火灾隐患问题。
摘要 本文介绍了一种基于视觉的着陆 (VBL) 概念,该方法整合了以下贡献:a) 利用飞行员交互来利用人类卓越的物体识别能力。这大大减少了视觉系统必须覆盖的搜索空间。飞机数据、已知情景背景和背景信息也被整合在一起。b) 一种不同的设计方法,包括多种图像处理 (IP) 算法的组合,提高了从早期进近到着陆和在不同环境条件下滑行的整个距离范围的稳健性。c) 使用此处介绍的结果进行飞机控制的视觉伺服在随附的论文中进行了展示。13 对于初步测试,已经实施了合成图像的模拟。
乍一看,加拿大郊区两条街道两旁整齐排列的两层房屋与周围成千上万的房屋很相似;但是,一个区域供热系统储存了夏季丰富的太阳能,以便在冬季为房屋供暖,这使得这个社区成为住宅空间供暖储热技术的全球先驱。德雷克登陆太阳能社区证明,这样的系统可以在寒冷气候下利用太阳能提供大部分(超过 90%)的空间供暖。建筑商设计了 52 栋独立的单户住宅,以吸引那些想要节能而不牺牲美感的主流购房者。
cos 2 θ L +cos 2 θ R − 2 ( θ L + θ R − 2 θ C ) + K 2 x f + K 3 ˙ x f + K 4 ˙ φ (12) 当应用于具有与第 4.1 节中相同的特征结构分配策略的基准时,制导律增益变为: K 1 , 2 , 3 , 4 = [0 .22 , 110 .89 , 405 .9 , − 1 .23] (13) 图5 展示了两个不同的起始位置(∆ Y 0 =20m 或 ∆ Y 0 =100m)。当飞机接近所需位置时,结果良好(即接近基线),但当位置远离着陆轴时,制导律无法以适当的方式执行。事实上,飞机没有降落在跑道上。为了解决这个问题,在(Bourquardez and Chaumette,2007b)中提出了一种参考轨迹策略,然而它的生成假设初始位置是已知的(这超出了我们的假设)。顺便说一句,(12)表明跑道尺寸已经通过参数 H = L 应用于控制律本身(13)
cos 2 θ L +cos 2 θ R − 2 ( θ L + θ R − 2 θ C ) + K 2 x f + K 3 ˙ x f + K 4 ˙ φ (12) 当将其应用于具有与第 4.1 节中相同的特征结构分配策略的基准时,制导律增益变为: K 1 , 2 , 3 , 4 = [0 . 22 , 110 . 89 , 405 . 9 , − 1 . 23] (13) 图 5 显示了两个不同的起始位置(∆Y 0 = 20m 或 ∆Y 0 = 100m)。 当飞机接近期望位置时,结果很好(即接近基线),但是当位置远离着陆轴时,制导律无法以适当的方式执行。事实上,飞机并没有降落在跑道上。为了解决这个问题,在(Bourquardez and Chaumette,2007b)中提出了一种参考轨迹策略,然而它的生成假设初始位置是已知的(这超出了我们的假设)。顺便说一句,(12)表明跑道尺寸已经通过参数 H = L 应用于控制律本身(13)中
本文介绍了一种固定翼无人机自动起飞和着陆控制系统 (ATOLS)。我们提出了一种制导和控制系统,以满足使用拦阻索进行高精度着陆的要求。对于轨迹跟踪,推导了基于视线 (LOS) 的纵向和横向制导律。对于内环控制器的设计,直接从飞行数据中识别线性模型。为了在起飞和着陆期间飞行状态发生变化的情况下保持控制性能的一致性,线性基线控制器增强了使用 L 1 自适应控制理论设计的补偿器,从而无需进行传统的增益调度。所提出的控制系统在带有拦阻钩的 Cessna UAV 上实施以进行验证。所提出的起降系统在一系列全尺寸航母模型试飞中表现出了稳定的性能。
第二次世界大战后,人们重新燃起对确保飞机能够在能见度极低的天气条件下安全着陆这一长期目标的兴趣,这促使英国、法国和美国开展了自动着陆系统的研究和开发计划。在回顾了着陆辅助设备的早期发展历史之后,本文介绍了 1945 年至 20 世纪 60 年代初英国皇家飞机研究院盲着陆实验组在导航系统、自动驾驶仪耦合器和操作技术方面所做的工作。其中进行的分析和实验工作促成了 Avro Vulcan 轰炸机单通道自动着陆系统的设计,本文也详细介绍了这些工作。同样,本文还介绍了英国飞机和航空电子设备制造商、民航局和航空登记委员会对霍克西德利三叉戟、维克斯 VC10 和其他民用运输飞机上采用的多通道系统的后续开发和适航认证所做的贡献。本文最后总结了波音 737、747、767 和协和式飞机的自动着陆能力。 1. 简介和早期历史 民航客机在各种天气条件下的自动着陆已成为民航的常规组成部分,并有助于提高航空运输的安全性和可靠性。英国在这一发展中发挥了重要作用,皇家航空研究院的盲着陆实验单元就是其中之一
美国国家运输安全委员会。2011 年。东海岸喷气机 81 号航班着陆后试图复飞时坠毁,霍克比奇公司 125-800A,N818MV,明尼苏达州奥瓦通纳,2008 年 7 月 31 日。飞机事故报告 NTSB/AAR-11/01。华盛顿特区。摘要:本事故报告讨论了 2008 年 7 月 31 日发生的东海岸喷气机 81 号航班事故,该航班是一架霍克比奇公司 125-800A,N818MV,在明尼苏达州奥瓦通纳市奥瓦通纳德格纳地区机场 30 号跑道着陆后试图复飞时坠毁。两名飞行员和六名乘客遇难,飞机因撞击力而损毁。这架非定期国内客运航班按照《联邦法规》第 14 部分 (CFR) 第 135 部分的规定运营。仪表飞行规则飞行计划已提交并启动;然而,该计划在着陆前被取消。事故发生时,目视气象条件占主导地位。本报告中讨论的安全问题涉及机组人员的行动;缺乏对 14 CFR 第 135 部分运营商的标准操作程序要求,包括机组资源管理培训和检查表使用;涡轮动力飞机的复飞指导;第 135 部分飞行前天气简报;飞行员疲劳和睡眠障碍;到达着陆距离评估指导和要求不足;第 135 部分按需飞行员指挥线检查;以及驾驶舱图像记录系统。针对这些问题,美国向联邦航空管理局提出了 14 项新的安全建议。美国国家运输安全委员会 (NTSB) 是一个独立的联邦机构,致力于促进航空、铁路、公路、海运、管道和危险材料安全。该机构成立于 1967 年,由国会通过 1974 年《独立安全委员会法案》授权调查交通事故、确定事故的可能原因、发布安全建议、研究交通安全问题并评估涉及交通的政府机构的安全有效性。美国国家运输安全委员会通过事故报告、安全研究、特别调查报告、安全建议和统计审查公开其行动和决定。近期出版物可在互联网上完整查阅,网址为 。第 1154(b) 条禁止在因报告中提及的事项造成的损害的民事诉讼中采纳或使用与事件或事故相关的 NTSB 报告作为证据。有关可用出版物的其他信息也可以从网站或通过以下方式获得:国家运输安全委员会记录管理部,CIO-40 490 L'Enfant Plaza, SW Washington, DC 20594 (800) 877-6799 或 (202) 314-6551 NTSB 出版物可以从国家技术信息服务处购买单本或订阅。要购买此出版物,请从以下机构订购报告编号 PB2011-910401:国家技术信息服务处 5285 Port Royal Road Springfield, Virginia 22161 (800) 553-6847 或 (703) 605-6000 独立安全委员会法案,编纂于 49 U.S.C.
模块和登月舱的分离是飞行中最关键的阶段之一。在此期间,机组人员将模拟登月下降的检查操作。登月舱中的麦克迪维特和施韦卡特将与指挥/服务舱中的斯科特分离,进行小规模会合和远程操作。分离、对接在第一次机动中,称为“迷你足球”,两艘航天器之间的最大距离约为三英里半。登月舱下降引擎将进行两次试射,然后抛弃,两艘飞船在第二次也是最后一次对接之前,最大距离约为 109 英里。操作完成后,登月舱上升级将脱离对接,其引擎燃烧至燃料耗尽,登月舱被送入远地点估计超过 3,600 英里的轨道。任务预计于星期四上午 5:46 左右溅落。
5. 需求分析_________________________________________________ 18 5.1. 唯一标识 _________________________________________________ 18 5.2. 传感器数据 _____________________________________________________ 18 5.3. 系统和网络 _____________________________________________ 22 5.3.1. 数据存储要求 ______________________________________ 22 5.3.2. 传感器数据处理 ________________________________________ 22 5.3.3. 数据检索 __________________________________________________ 22 5.3.4. 数据通信_____________________________________________ 23 5.3.5. 电源管理 _____________________________________________ 23 5.3.6. 系统可扩展性 _____________________________________________ 23 5.3.7. 系统耐用性 _____________________________________________ 23 5.3.8. 安全问题 _______________________________________________ 23 5.4. 环境限制 ____________________________________________ 24 5.5.解决方案选择标准 ______________________________________________________ 25