起落架是飞机的关键子系统之一。设计重量最轻、体积最小、性能高、寿命更长、生命周期成本更低的起落架给起落架设计师和从业者带来了许多挑战。此外,在满足所有法规和安全要求的同时,缩短起落架设计和开发周期也至关重要。多年来,已经开发出许多技术来应对起落架设计和开发中的这些挑战。本文介绍了起落架设计和开发的各个阶段、当前的技术前景以及这些技术如何帮助我们应对起落架开发中涉及的挑战以及它们未来将如何发展。
这个故事是这一代飞行员和维护专业人员如何接受智能使用作战能源资源的一个例子。空军人员可以通过在整个企业中应用这种思维方式来支持空军,从而改变与创新和作战能源相关的整体文化。随着时间的推移,个人的领导力和对智能操作的认可将创造一种氛围,空军人员本能地以作战能源为中心的方式进行操作,通过智能能源使用最大限度地提高战斗能力。
起落架是飞机的关键子系统之一。设计重量最轻、体积最小、性能高、寿命更长、生命周期成本更低的起落架给起落架设计师和从业者带来了许多挑战。此外,在满足所有法规和安全要求的同时,缩短起落架设计和开发周期也至关重要。多年来,已经开发出许多技术来应对起落架设计和开发中的这些挑战。本文介绍了起落架设计和开发的各个阶段、当前的技术前景以及这些技术如何帮助我们应对起落架开发中涉及的挑战以及它们未来将如何发展。
在当今大多数常规民航运营中,运营可靠性和安全性在很大程度上是通过在空中和地面提供受保护的环境来实现的。飞机起飞和降落在机场,这些机场大多受到保护,不会受到不受控制的交通干扰。因此,从主要机场到专用直升机停机坪,飞机运营可以依赖于一个相当可预测的环境。当民用飞机在不受控制的空域中运行时,主要责任在于飞行员发现和避免危险,而在机场和直升机场外起飞和降落通常依靠地面人员来识别和保护合适的运营区域。在所有情况下,经过专门训练的飞行员都会非常小心地操纵飞机避开障碍物和其他交通,几乎完全依靠“看见并避开”。提供这种受保护环境的必要性限制了城市空域的容量,也是城市空中交通目前仅限于直升机服务的主要原因之一,用于 VIP 运输、观光和紧急服务。
Daeil Jo 和 Yongjin (James) Kwon 工业工程,亚洲大学,韩国水原 电子邮件:j11129@naver.com,yk73@ajou.ac.kr 摘要 —随着公众对无人机兴趣的增加,无人机正在成为第四次工业革命时代的重要技术领域之一。对于无人机来说,固定翼类型是有利的,因为它比多旋翼类型具有更长的飞行时间,并且速度更快。然而,它需要一个单独的、漫长的、无障碍物的着陆区,这在城市地区很难找到。此外,固定翼型无人机不容易安全着陆。正因为如此,对垂直起降型无人机的需求正在上升。本研究的目的是设计和开发一种能够垂直着陆和起飞的垂直起降飞机,并在垂直、水平和过渡飞行过程中具有适当的推力和升力。我们制定了规范化的无人机开发流程,为开发过程提供理论指导。为了确定垂直起降飞机的气动特性,我们采用了 3D CAD 和 CAE 方法,可以模拟风洞试验以获得最佳气动效率。使用开发的流程,我们确定了构成无人机的内部模块的标准,并且可以考虑适当的重心来组装机身。我们进行了 SW 设置以进行飞行调整,并能够相应地进行飞行测试。在飞行体验中
摘要 在网络恐怖主义概念中,无论恐怖组织类型如何:宗教、民族分裂主义、革命派和极右翼极端分子,最有效的威慑解决方案都在于对最终用户的保护和强化。在破坏性和/或破坏性的网络恐怖主义活动中,人往往是安全链中最薄弱的环节。因此,与保护方式相比,威胁源并不那么重要。人们已经做出许多努力来加强远端接收者的通信和关键信息系统基础设施。其中之一就是地理加密密码算法。它依赖于使用最容易受到网络攻击的信号(即 GPS 信号)来增加新的安全层。因此,它的优势源于其弱点。地理加密技术假设使用防干扰和防欺骗 GPS 接收器,如果没有这些接收器,该模型对最终用户的安全没有任何附加价值。本研究对模型在脆弱性挑战中的表现进行了评估,表明该模型中 GPS 工具的特征是既是解决方案,同时也是脆弱目标。特别关注 GBAS 着陆系统 (GLS) 在军事和民用航空方面的性能。
图 1. SD108 中全基因组整合位点的计算机筛选算法。(A)选择基因间位点中的 gRNA 进行 iCas9 介导的整合。扫描基因组中的“NGG”PAM 以获得向导 RNA 文库。筛选 gRNA 以尽量减少潜在的脱靶,并根据其基因组位置进行过滤。(B)结合各种因素对实验筛选的基因组位点进行优先排序。根据寡核苷酸合成和质粒克隆标准对 gRNA 及其相应的同源臂进行改进。实施设计规则以确保菌株稳定性,避免破坏调控元件并包括基因必需性信息,同时添加基因密度作为开放染色质的代理。结合转录组学数据来选择靠近转录活性基因的位点。
飞机的起飞和降落是飞行的最重要阶段,因此了解飞机的起飞和降落特性非常重要,研究起飞和降落性能对于飞机的设计和安全至关重要。因此,在本文中,我们朝着提高起飞和降落的安全性和效率迈出了一步。通过启发和借鉴EMALS系统和磁悬浮的概念,我们尝试引入一种称为FTOLS(无摩擦起飞和降落系统)的新跑道概念,这将提高着陆和起飞的效率。在本文中,我们提出了一种具有一定倾斜度和安装磁场的新跑道设计,其在着陆和起飞过程中极性会发生变化并导致加速(起飞)和减速(着陆)。此外,还为海湾或类似重量的民用飞机提出了FTOLS飞机部分的设计程序,因为它的重量较轻,净空高度较低,并且在机身,机翼和尾部安装超级磁场也很容易。新系统建议通过减少跑道距离、减少燃料消耗、降低噪音以及减轻飞机重量来提高着陆和起飞效率。