简介 许多方法已用于设计飞机自动驾驶仪。Taha 等人。(2009) 状态反馈、极点配置、滞后控制器和模型参考自适应控制技术已用于爬升率自动驾驶仪的设计。No 等人。(2006) 经典根轨迹和波特频率法用于设计高度稳定、速度和飞行路径角自动驾驶仪。此外,零努力脱靶概念也被有效用于提出适用于任意轨迹跟踪控制问题的制导律。在所提出的制导方案中,命令以速度、飞行路径和航向角的形式给出,以便它们可以轻松地与现有的控制配置相匹配,Giampiero 等人。(2007) 编队控制的设计基于内环和外环结构。平面外环制导律采用反馈线性化设计,而垂直通道的外环采用补偿器设计。内环线性控制器也是使用经典补偿方法设计的,Taha 等人。(2009) 设计了一个监督控制系统来管理不同自动驾驶仪的接合和脱离,并将命令输入传递给它们,使飞机实现所需的轨迹。在本文中,使用离散时间的模型跟踪技术设计了不同的自动驾驶仪。选择这些自动驾驶仪是为了将它们用于制导系统,以促使飞机在横向规划中实现特定的飞行路径。这些自动驾驶仪包括倾斜角、航向和水平环路自动驾驶仪。每个自动驾驶仪都将在飞机非线性模拟程序 (Brain, 1992) 上进行模拟,以说明飞机的响应并检查其实现平稳和可接受的机动的能力。本文使用了飞行条件 3 下的 Delta Aircraft 数据 (Etkin, 1982)。自动驾驶仪设计程序
研究设计。使用Roy-Camille和Magerl技术在98名年轻,无症状的北美志愿者中确定螺丝螺丝长度。目标。使用下轴颈椎中的Roy-Camille和Magerl技术提供可靠的螺丝长度螺钉长度数据。背景数据摘要。过去已经使用不同的子测量特性和小样本量研究了横向质量螺钉长度。结果表明,螺钉长度和影响因子的差异很大。不适当的螺丝长度会导致螺钉插入,小平面关节损伤或固定不足时神经血管损伤。方法。双层螺钉长度在每个脊柱水平上通过C3 – C7进行双侧测量98名年轻志愿者的C3 – C7,使用计算机断层扫描重建,通过在Roy-Camille和Magerl技术的螺钉平面上获得的侧向质量进行重建。结果。使用这两种技术,轨迹在C4 – C6处长长,在C3处较短,在C7处最短。与所有水平的FE雄性相比,男性的螺钉长度更大。与Roy-Camille Technique相符时,在C3 – C6水平下的平均MAGER螺钉长度约为C3 – C6水平的2.6毫米,在C7水平上长1.3毫米。螺钉长度与人体测量值(包括身材,体重和颈部长度)之间存在最小的相关性。结论。使用这两种技术在每个亚轴向级别都存在显着变化。我们建议使用术前斜斜计算的Tomogra-Phy扫描来确定每个级别固定固定的螺钉长度,这为螺钉长度提供了术前模板的最准确技术。
16.摘要 本报告分析了与 AHS 车辆的横向和纵向控制相关的要求、问题和风险。本报告介绍了横向和纵向控制自动化的可能发展路径。该发展路径的特点是五种进化代表性系统配置 (ERSC)。本分析从性能和可靠性要求以及部署场景的角度研究了纵向、横向以及最终横向和纵向组合系统的发展。性能要求分析涵盖了自动控制期间的驾驶员舒适度和接受度问题以及自动和手动控制之间的转换,此外还研究了控制系统的传感器、执行器和控制器要求。道路交通控制器可以通过减少行程时间和避免拥堵来改善交通网络中的交通流量。可靠性要求分析使用 NHTSA 的事故率数据来量化不同级别车辆自动化的可靠性要求。本报告推导出用于横向和纵向控制的自动系统的可靠性功能要求。可靠性功能要求使我们能够评估实施这些自动系统所需的冗余度和结构复杂性。这些信息可用于估算构建自动化高速公路系统的成本和难度。17.关键词 车辆横向和纵向控制、进化代表性系统配置、可靠性要求、冗余度、性能要求、人为因素、容量效益、自动驾驶汽车
16. 摘要 本报告分析了 AHS 车辆横向和纵向控制的相关要求、问题和风险。本报告介绍了横向和纵向控制自动化的可能演进路径。该演进路径的特点是五种演进代表性系统配置 (ERSC)。本分析从性能和可靠性要求以及部署场景的角度研究了纵向、横向以及最终的横向和纵向组合系统的发展。性能要求分析涵盖了自动控制期间的驾驶员舒适度和接受度问题以及自动和手动控制之间的转换,此外还研究了控制系统的传感器、执行器和控制器要求。道路交通管制员可以通过减少行程时间和避免拥堵来改善交通网络中的交通流量。可靠性要求分析使用 NHTSA 的事故率数据来量化不同级别的车辆自动化的可靠性要求。本报告得出了横向和纵向控制中使用的自动系统的可靠性功能要求。可靠性功能要求使我们能够评估实施这些自动系统所需的冗余度和结构复杂性。这些信息可用于估计建设自动化高速公路系统的成本和难度。17. 关键词 车辆横向和纵向控制、进化代表性系统配置、可靠性要求、冗余度、性能要求、人为因素、容量效益、自动驾驶汽车
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列越来越大的实验,以研究船舶框架和格架在横向载荷下的塑性行为。初始测试以单个框架进行,固定在端部并在中心或端部附近施加小块载荷,以便可以研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,在 6.8m x 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。已对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和弯曲)与整体塑性破坏之间存在许多有趣的关系。讨论了对设计(尤其是基于目标的设计)的影响。
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列规模越来越大的实验,以研究船舶框架和格架在横向载荷作用下的塑性行为。初始测试以单个框架进行,固定在两端,并在中心或两端附近施加小块载荷,以便研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单个框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,位于 6.8mx 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和断裂)与整体塑性坍塌之间存在许多有趣的关系。本文讨论了对设计(尤其是基于目标的设计)的影响。
第 1 章 抗震结构设计和施工的一般要求....................................................................................................................1 101 UBC §1626 一般规定....................................................................................................................................................................................................................................1 101.1 目的.......................................................................................................................................................................................................................1 101.1 目的.......................................................................................................................................................................................................................................1 101.1 目的.......................................................................................................................................................................................................................................1 101.1 目的.......................................................................................................................................................................................................................................1 1 101.2 最低抗震设计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 101.6 计算机计算 . . . . . . . . . . . . . . 1 101.7 UBC §1612 负载组合 . . . . . . . . . . . . 1 102 UBC §1627 定义 . . . . . . . . . . . . . . . . . . ... 6 104.2 占用类别. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 104.6 结构系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...