各种建模技术用于预测锂离子电池的容量褪色。代数还原模型本质上可以解释且计算快速,非常适合用于电池控制器,技术经济模型和多目标优化。用于用石墨阳极的锂离子电池,石墨表面上的固体电解质插入(SEI)生长占主导地位。这种褪色通常是使用物理知情方程式建模的,例如预测溶剂扩散限制SEI生长的时间根 - 根源,以及Arrhenius和Tafel类似方程,预测温度和最新电量率依赖性。在某些情况下,提出了完全的经验关系。但是,很少进行统计验证以评估模型最佳性,并且通常只研究了少数可能的模型。本文展示了一种新的程序,可以自动通过双级优化和符号回归从数百万算法生成的方程中自动识别降级降解模型。使用交叉验证,敏感性分析和通过自举通过交叉验证,敏感性分析和不确定性定量在统计上验证。在LifePo 4 /石墨细胞日历老化数据集中,自动识别了使用方形 - 根,功率法,拉伸指数和sigmoidal功能的模型,与人类专家确定的模型相比,具有更高的准确性和更低的不确定性,并证明先前已知的物理关系可以使用“重新验证的机器学习”。©2021作者。[doi:10.1149/1945-7111/abdde1]由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
摘要:在热失控(TR)期间,锂离子电池(LIBS)产生大量气体,当电池故障并随后燃烧或爆炸时,电动汽车和电化学能源存储系统可能会造成不可想象的灾难。因此,要系统地分析具有Lifepo 4(LFP)和Lini X Co Y Mn Z O 2(NCM)阴极材料的常用LIB的热后失控特性,并在电池热逃亡过程中最大程度地发挥了原位气体,我们在电池热失控过程中最大程度地发电了实验,则使用Adiabatic Explotic爆炸室(AEC)(AEC)测试libes libs libs libs libs libs libs libs。此外,我们对热失控过程中产生的气体成分进行了原位分析。我们的研究发现表明,在热失控之后,NCM电池比LFP电池产生的气体更多。基于电池气体的产生,TR造成的伤害程度可以排名如下:NCM9 0.5 0.5> NCM811> NCM622> NCM523> NCM523> LFP。NCM和LFP电池的热失控期间的主要气体组件包括H 2,CO,CO 2,C 2 H 4和CH 4。LFP电池产生的气体包含h 2的高比例。与NCM电池产生的混合气体相比,LFP电池在TR期间产生的LFP电池产生的气体的高浓度较低。因此,就电池TR气体组成而言,危险水平的顺序为LFP> NCM811> NCM622> NCM523> NCM9> NCM9 0.5 0.5 0.5 0.5 0.5。尽管LFP电池非常安全,但我们的研究结果再次引起了研究人员对LFP电池的关注。尽管实验结果表明,在大规模电池热失控事件中,LFP电池具有较高的热稳定性和较低的气体产生,考虑到气体产生成分和热失控产品,但LFP电池的热失控风险可能高于NCM电池。这些气体还可以用作电池热失控警告的检测信号,为未来电化学能源存储和可再生能源行业的未来开发提供了警告。
LIB利用率上升增加了对关键原材料的需求,例如锂(Li),Nickel(Ni)和Cobalt(CO)。但是,这些基本材料中的大多数受特定国家的监管。在刚果民主共和国开采了一半以上的钴矿石,并在中国进行了改进,约有80%的锂由澳大利亚和智利控制。[2]原材料和生产领域的不均匀分布引起了人们对全球供应链的关注。结果,锂和钴价格正在上涨和波动,与此同时,地理垄断可能导致地方政府垄断原材料的供应。[3]因此,从可持续性的角度来看,必须建立从消费液(电动汽车,固定储物电池和家用电器)中回收的关键伴侣的次要供应到期这种潜在短缺的严重性。另一方面,由于LIB通常可以平均使用10年,因此[3,4]到2030年,用过的Libs的数量预计将超过500万吨。[5] LIB的主要组成部分是阴极材料(Lini X Co Y Mn Z O 2(0 ), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).所有这些不同的成分都包含有害物质,并导致金属,灰尘,有机和氟污染。[6]垃圾填埋或焚化会损害生态系统。例如,一旦电极材料进入环境,来自阴极的金属离子,来自阳极的碳灰尘,强碱和来自电解质的重金属离子可能会引起严重的环境污染,危险等,包括提高土壤的pH值[7],[7]并产生毒性气体(HF,HF,HCL等)。此外,电池中的金属和电解质会损害人类健康。例如,钴可能通过地下水和其他通道进入人体,从而导致
显示出更高的比容量和更低的ICE。4,5 例如,HC中石墨烯层的无序取向会导致严重的副反应,从而导致初始循环中额外的锂损失约 30%(ICE,约 60%)。硅基负极具有 1500 – 4200 mAh g −1 的理论比容量,是下一代电池最有希望的候选材料之一。尽管如此,硅基负极相对较低的 ICE(60% – 85%)和固体电解质中间相 (SEI) 膜的持续重建也严重阻碍了它们的实际应用。6 因此,当这些负极材料与具有有限 Li + 的正极材料(例如 LiCoO 2 和 LiFePO 4 )结合时,由于不良的副反应(例如电解质分解),全电池的容量在长时间循环过程中会出现高不可逆活性锂损失,从而导致容量衰减和结构退化。因此,在循环前用化学或电化学方法向负极和正极中引入额外的锂源(即预锂化)是一种恢复全电池能量密度的有效策略。7此外,具有相对大容量的无锂正极(如硫)也可用于组装高能电池。此外,许多方法不仅可以补偿初始的不可逆容量损失(ICL),还可以恢复循环过程中的活性锂损失,提高后续循环中的电池稳定性。此外,最近发现通过预锂化可以形成坚固的SEI,从而提高硅基负极的倍率和循环性能。8目前,已经报道了各种预锂化方法(例如预锂化添加剂、直接接触法、含锂复合溶液和电化学循环)。虽然这些策略都可以实现电池中的锂补偿,但它们在实际应用中的普适性和可行性差异很大,这对大规模应用提出了巨大挑战。因此,需要进行实用评估以加速实现有效的预锂化。本文,我们根据商业电池制造过程中的不同步骤系统地总结了各种预锂化策略的发展,这些步骤大致可分为以下几步:(1)活性材料合成,(2)浆料混合过程,(3)电极预处理和(4)电池制造(图1)。此外,将从准确性、经济性、便利性、均匀性、预锂化能力和大规模生产过程中的安全性等各个方面评估这些预锂化策略的优势和挑战。本综述旨在深入了解预锂化策略未来在商业和实际应用方面的发展。同时,本综述还介绍了预锂化策略在商业和实际应用方面的发展情况。
光伏工业硅的再生浪费对高性能 - 锂离子电池阳极Kai Wang*,Xiao-bin Zhong,Yue-xian Song,Yao-hui Zhang,Yan-gang Zhang,Yan-Gang Zhang,Xiao-Gang You* Zhang, Xing-Liang Yao, Feng Li, Jun-Fei Liang * , Hua Wang * Abstract The diamond-wire sawing silicon waste (DWSSW) from the photovoltaic industry has been widely considered as a low-cost raw material for lithium-ion battery silicon-based electrode, but the effect mechanism of impurities presents in DWSSW on lithium storage performance is still not well understood, meanwhile, it迫切需要制定一种将DWSSW颗粒变成高性能电极材料的策略。在这项工作中,使用原位蚀刻技术对DWSSW中杂质的发生状态进行了仔细的分析。然后,小说Si@c@sio x@pal- n-c复合材料是通过原位封装策略设计的。获得的Si@C@SiO X@Pal -N -C电极在当前密度为1.0 A·G -1的情况下,初始库仑效率(ICE)的高第一容量为2343.4 mAh·G -1,最初的库仑效率(ICE)为84.4%,并且可以在200个周期后提供令人印象深刻的984.9 mAh·g -1。组合的数值模拟模型计算,Si 4+ /Si 0和Si 3+ /Si 0价比例的增加,SIO X层中的价状态态导致von Mises应力减少,这最终改善了循环结构稳定性。同时,Sio X层上的多孔2D-3D铝/氮(Al/N)共掺杂的碳层和纳米线,由于其发达的层次孔结构,可以为锂储存提供丰富的活性位点,从而促进离子运输。更重要的是,Si@c@sio x@pal-n-c // LifePo 4完整单元的性能在实际应用中显示出巨大的潜力。关键字锯硅废物;原位封装;铝/氮共掺杂;多孔碳纳米线;锂离子电池K. Wang*,X.-B。Zhong,Y.-X. 歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cnZhong,Y.-X.歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cn
先进锂离子电池和技术的开发通常解决以下四个目标之一:1)创造更高的体积能量密度和/或比能量/功率,2)赋予本质上更安全的化学性质,3)实现更快的充电速度,和4)使用价格较低但性能具有竞争力/接近竞争力的电池。当然,其他因素也会发挥作用,这取决于目标市场类型和全球供应的可用性;然而,为了广泛采用,上述要点/标准仍然很重要。锂离子在商业上已在通信和运输 (EV) 应用行业中根深蒂固。如今,轻微的迭代(主要是电解质定义的)正在逐步提高安全性、成本和循环或日历寿命。最后一点,日历寿命,是能量密度极高的锂离子电池经常被忽视的一点,因为它们在较高电荷(OCV 条件)和高温下具有反应性。虽然循环寿命与容量/能量性能下降之间存在争议,但重新利用电池本身或在电池寿命结束时回收内部化学成分的尝试在该领域已大大增加。希望在回收循环中也能考虑能源中性过程。尽管如此,能源存储领域相当大,这一追求取决于推动该领域朝着许多方向之一迈进,朝着更崇高的目标迈进。因此,下一代电池和技术的追求必须更深入地研究新的和新颖的化学和电化学,以创造一个中性、无碳环境的世界,一个仅靠太阳能和风能等可再生能源就能满足能源需求的世界。因此,电力和化学在我们这个世界中的应用是 21 世纪的杰作。钠离子电池 (SIB) 进入电池领域让我们认识到预知由锂离子衍生的非水 (电) 化学知识的价值,这可以加快研究方向并缩短开发时间。在过去 10 年中,有关 SIB 的出版物数量大幅增长,这确实代表了一种“超越锂离子”的电池系统方法;然而,这种方法的固有能量密度可能较低。接近 250 Wh/kg 或相当于当今市场上最好的锂离子电池的 SIB 能量密度尚未得到证实/发现。然而,与锂离子相比,电池组建模确实表明生产和原材料提取成本更低,以及材料加工所需的能量更低(以成本/kWh 计算)。如果 SIB 的成本低于石墨/LFP (LiFePO 4 ),同时具有相同的能量密度、寿命、性能和安全性,那将会很有趣,而且肯定具有竞争力。在纸面上这很容易陈述,但挑战在于在现场展示这种比较。我们期待继续开发新的 SIB 阴极和阳极材料的相空间,新的电解质、盐和其他 SIB 技术和特性将引起人们对这个快速发展领域的兴趣。
在1970年代,已经进行了辩护,以领导迄今为止最大的脱碳作用,但目前受到非常高的建筑成本的困扰。[3]“绝望的时期要求采取绝望的措施”,而能源存储似乎越来越成为人类的生存技能。Here, we focus on the lithium-ion bat- tery (LIB), a “type-A” technology that accounts for > 80% of the grid-scale bat- tery storage market, [4] and specifically, the market-prevalent battery chemistries using LiFePO 4 or LiNi x Co y Mn 1 - x - y O 2 on Al foil as the cathode, graphite on Cu foil as the anode, and organic liquid electrolyte, which目前的价格低至90美元/千瓦时(单元)。lib可以在10个3个周期的订单上进行深度充电并排出[5],尽管此循环寿命可能会取决于骑自行车的条件和温度而变化很大。从LIB电池到电池组到能量系统,在热电机,电力电子,安全措施和控制措施之后,成本增加了2×至4倍的成本[6]。在过去的十年中,周期寿命增加了10倍,包装水平成本下降了6倍,[7]在电动汽车(EV)供应链的指数增长的帮助下[7]。中国打破了2018年的100万ev年度销售门槛。实际上,一个人可能正在寻找200美元至$ 300/kWh(系统)资本支出(CAPEX),用于LIB存储。[8]在12个网格尺度应用方案中的10个中(从黑色开始,功率质量到主要,次级和三级响应),除了季节性的能量存储和主要响应外,LIB预计将在2040年以上的其他技术在2040年击败所有其他技术。在当今现有的电力储存技术中,例如抽水,压缩空气,飞轮和Vanadium氧化还原流量电池,LIB具有快速响应率,高能量密度,良好的能量效率和合理的循环寿命的优势,如Schmidt等人的定量研究所示。第一个问题是:我们需要多少储能?简单的经济学表明,LIB不能用于季节性能量存储。美国以化学燃料的形式保存大约6周的能量储能,在冬季进行加热。[9]假设我们已经达到了200美元/千瓦时电池的成本,然后我们的电池价值200万亿美元(2020年的10×US GDP)只能提供1000个TWH储能,或3.4个四边形。由于美国在2020年使用了92.9个四四足动能量,因此仅为2周的存储,并且不足以在冬季加热房屋。因此,对于可以在冬季生存的100%清洁能源基础设施可能需要进行非常大规模的热量存储[9]和核代。真实