Currently, the two main types of batteries installed in electric vehicles (EVs) worldwide are lithium iron phosphate (LFP) batteries, which use lithium iron phosphate (LiFePO 4 ; hereinafter LFP) as the cathode material, and ternary lithium-ion (NMC) batteries, which use a compound consisting primarily of nickel, manganese, and cobalt.LFP电池更安全且价格较低,因为它们使用的较少的稀土(例如钴)具有较低能量密度1的缺点,这会缩短电动汽车的巡航范围。另一方面,尽管NMC电池的能量密度较高,但它们不像LFP电池那样安全,同时也更昂贵,因为它们使用了钴和其他稀土。LFP电池和NMC电池根据其各自的特性进行了区分,前者通常用于低价的EV型号,巡航范围为300 km至500 km,而后者的中产阶级和高价EV型号则用于400 km至700 km。尽管NMC电池目前目前占全球市场份额的大部分,但近年来,LFP电池提供了更好的成本性能,但随着绩效的提高,尤其是在中国的市场份额,尤其是在中国的市场份额。
(例如在智能手机或电动汽车中)。不幸的是,这些现有的储能设备仍然相当不可持续、昂贵,且容易起火,或在发生故障时爆炸。[1,2] 传统储能设备中最常见的正极材料是无机材料,例如 LiCoO 2 、LiFePO 4 或 LiMn 2 O 4,并且通常基于不可持续且有毒的重金属。[3,4] 就可持续性和价格而言,特别是基于有机电极的储能设备,其利用具有氧化还原活性的有机材料,被认为是下一代电池的有希望的候选者。[5–7] 与通常在充电和放电过程中通过插层机制运行的传统无机电极不同,有机储能装置的特点是 Li + 在表面附近不同的有机氧化还原活性位点发生存储-释放反应。由于不存在晶格转变、传输限制和发热等问题(这些问题通常会缩短无机正极材料的使用寿命),因此可以实现更高的倍率性能和更长的循环寿命。此外,有机储能设备可以成为可穿戴电子产品中柔性和可拉伸设备的绝佳候选。[8,9]
数据中心消耗大量能量,导致CO 2排放,全球变暖,并导致大量电力成本。为了解决这些问题,越来越多的公司考虑了建立绿色数据中心。最丰富的能源资源是太阳能;现在,它是全球能源转型的关键参与者。潮汐能最近也引起了特别的关注。与其他常用的可再生能源相比,资源的可预测特征使潮流的动能成为极具竞争力的能力资源。为此,使用混合潮汐/光伏系统来为偏远岛上的MW尺度绿色数据中心供电。绿色数据中心主要取决于可再生能源,这些能源具有间歇性,并且需要能够确保可持续能源喂养的存储系统。所提出的系统由MW量表质子交换膜电解液和燃料电池组成。此系统与LifePo 4电池相关联,以覆盖快速动力学。在本文中,介绍了系统建模以及最初的控制和能源管理系统的建议,以使数据中心能量消耗与可再生能源产生的同时尊重不同的系统约束。该模型是在MATLAB/SIMULINK平台中实现的,其中模拟结果在不同的操作条件下表现出系统性能。
电池热管理系统(BTM)的控制对于在炎热天气下电动汽车(EV)的热安全性,能源效率和耐用性至关重要。为了解决电池冷却优化问题,本文利用动态编程(DP)制定基于在线规则的控制策略。首先,建立了LIFEPO 4电池组的电热模型。在不同的速度轮廓和温度下提出了面向控制的BTMS模型。然后在DP框架中,将包括电池老化成本和冷却引起的电力成本组成的成本函数最小化,以获得最佳的压缩机功率。通过确定三个规则“快速冷却,缓慢冷却和温度维度维护”,这是一种基于规则的近乎基于规则的冷却策略,它使用尽可能多的再生能量来冷却电池组,以进行在线执行。仿真结果表明,在不同的操作条件下,提出的在线策略可以大大改善驾驶经济并减少电池降解,与离线DP相比,电池损失差异不足2.18%。最终提供了有关不同实际情况下电池冷却的建议。
Lynx Smart BMS NG是专门为Victron Lithium NG电池设计的专用电池管理系统(BMS)。这些电池利用磷酸锂(LifePo₄)技术,可在12.8 V,25.6 V和51.2 V变体中使用,具有不同的能力。它们可以串联连接,平行或两者组合,以创建用于12V,24V或48V的系统电压的电池库。在配置具有12V或24V电池的库时,最多可以使用50个电池,而最多可与48V电池一起使用25个电池。这允许使用12V电池的最大储能能力为192 kWh,最高384 kWh,带24V电池,128 kWh和48V电池。最大的能量存储容量可以通过与多个Lynx Smart BMS并行,这也可以确保在电池库失败的情况下冗余。有关这些电池的全面详细信息,请访问Victron Lithium ng电池产品页面。在可用于所有新锂电池的各种BMS中,Lynx Smart BMS NG是功能最丰富且完整的选项,并与Lynx Distribution System中的其他M10产品无缝集成。可在500 A(M10)和1000 A(M10)版本中使用。
复合聚合物陶瓷电解质结合了聚合物和陶瓷的优点,在高能量密度锂金属电池中表现出了巨大的潜力。然而,低离子电导率和与电极的接触不良限制了它们的实际应用。在这项研究中,我们开发了一种高导电性和稳定性的复合电解质,该电解质具有高陶瓷负载量,可用于高能量密度锂金属电池。该电解质通过原位聚合生产,由聚偏氟乙烯/陶瓷基质中的一种名为聚-1,3-二氧戊环的聚合物组成,具有出色的室温离子电导率(1.2 mS cm − 1),并且在 1500 小时内与锂金属具有高稳定性。在 Li|电解质|LiFePO 4 电池中测试时,该电解质在室温下具有出色的循环性能和倍率能力,在 1 C 下 500 次循环后的放电容量为 137 mAh g −1。此外,该电解质不仅表现出 0.76 的高 Li + 迁移数,而且显着降低了与电极的接触电阻(从 157.8 降至 2.1 𝛀)。当在具有高压 LiNi 0.8 Mn 0.1 Co 0.1 O 2 正极的电池中使用时,可实现 140 mAh g −1 的放电容量。这些结果展示了复合聚合物陶瓷电解质在室温固态锂金属电池中的潜力,并提供了设计具有电极兼容界面的高导电性陶瓷内聚合物电解质的策略。
Sarawut Sirikasemsuk,1个Ponthep Vengsungnle,2 Smith Eiamsa-Ard 3和Paisarn Naphon 4,*摘要电池模块的热管理在其一生,性能,性能和安全风险中起着至关重要的作用。超载或外部热量会导致热失控。在高操作条件下,电池内部的电解质蒸发并产生较高的压力,导致电解质分解,泄漏,点燃和爆炸。使用湍流混合物,考虑了电池通过电池壳的流动的锯齿形流动的热行为。计算域包含十二个棱镜Lifepo 4电池电池,并具有四个冷却流夹克配置。从比较过程中达成了合理的协议。随着工作流体和较高浓度,TIO 2纳米流体和Fe 3 O 4的出口冷却剂温度高于水的高度,可提高去除热量能力。反向Zigzag引导流量降低了电池温度。电池模块的最高温度梯度分别为5.00 O C,4.60 O C,4.53 O C,3.41 O C和1.85 O C,分别为I,II(a),II(a),II(b),III和IV。因此,这种冷却系统可能是设计电池模块内部区域的冷却系统的替代方法,尤其是大型模块。
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
摘要:随着全球能源优先级转向可持续替代方案,对创新储能解决方案的需求变得越来越重要。在这种景观中,固态电池(SSB)成为主要的竞争者,就能量密度,安全和寿命而言,对传统的锂离子电池进行了显着升级。本综述提供了对SSB的彻底探索,重点是传统和新兴的阴极材料,例如氧化锂(LiCoo 2),含锰氧化锂(Limn 2 O 4),磷酸锂(LifePo 4),以及新颖的硫化物和氧化物。这些材料与固体电解质的兼容性及其各自的益处和局限性进行了广泛讨论。评论深入研究了阴极材料的结构优化,涵盖了纳米结构,表面涂层和复合配方等策略。这些对于解决电导率限制和结构性漏洞等问题至关重要。我们还仔细检查了电气和热性能在维持电池安全性和性能中的重要作用。得出结论,我们的分析强调了SSB在储能未来的革命作用。尽管已经取得了重大进步,但前进的道路带来了许多挑战和研究机会。本评论不仅承认这些挑战,而且还指出了对可扩展制造方法的必要性以及对电极 - 电解质相互作用的更深入的了解。它旨在引导科学界解决这些挑战并推进SSB的领域,从而为环保能源解决方案的发展做出重大贡献。
Table of Contents Table of Contents Introduction 3 Safety Considerations 3 Regulator Installation 4 Unpacking the Box 4 Locate And Mount The Regulator 4 Basic Wiring Installation 4 Installation by Wire 6 Regulator Operation 10 Regulator Programming Methods 11 Using the SG200 Color Display 11 Using the Bluetooth® Gateway (SG2-0300 optional) and the Balmar App 11 Regulator Display Modes - Short Display / Long Display 13 How the Magnetic Reed Switch Works 14 Basic Programming with Reed Switch 14 Programming For Battery Type 14 LFP LiFePO 4 Recommendations 15 Regulator Programming Flow Chart (More details can be found on pages 9-14) 16 Programming The Max Field Percentage (Belt Load Manager) 17 Programming For Short or Long Display Mode 17 Programming For Alternator Failure Advisory Mode (BDL) 17 Programming the SmartLink Device ID (dLd) 18 Programming the Battery and Alternator Temp Sensor Enforcement (SEn) 18 Advanced Programming with芦苇开关18访问高级编程模式18进行高级编程调整18电池均衡20附加调节器功能21小型发动机模式21 dash灯21辅助#1灯21 float float 22系统故障排除23第23电压调节器测试23交流发电机测试24 BALMAR CARTINGING 24 BALMAR PARTINGE