希腊语术语“ Lipos”,意思是脂肪,而“ soma”是“脂质体”一词的根。脂质体的术语是指其结构成分,即磷脂,而不是其大小。脂质体可以是单层或多层脂质体,并且可以在各种尺寸中发生。由于血浆蛋白在其“第二代形式”中的吸附(称为空间稳定脂质体)引起的,常规脂质体的主要缺点之一是它们的快速去除。脂质体组成具有增强抗癌药物在体内功效的潜力。当患有L1210白血病的小鼠在脂质体配方中给予抗癌药物阿拉伯糖苷时,动物的生命周期大大延长,并且体内活性的增强。
希腊语“Lipos”表示脂肪,“Soma”表示身体,两者组合形成球形同心囊泡,称为脂质体。脂质体是圆形囊状磷脂分子。它包裹水滴,特别是以人工形式将药物运送到组织膜中。脂质体是一种纳米颗粒(尺寸为 100 纳米)[1]。脂质体于 1961 年由 Bangham 首次描述,这是一次偶然的发现,他将磷脂酰胆碱分子分散在水中,在此期间他发现该分子形成封闭的双层形状,具有水相部分,水相部分被脂质双层包裹[2]。脂质体很有用,因为它们可作为多种药物的载体,具有潜在的治疗或其他特性。各种载体(如纳米颗粒、微粒、多糖、凝集素和脂质体)可用于将药物靶向特定部位。脂质体药物输送因其在药物输送、化妆品和生物膜结构等各个领域的贡献而受到人们的关注 [3] 。脂质体是一种微小的气泡(囊泡),其膜由磷脂双层组成。膜通常由磷脂制成,如磷脂酰乙醇胺和磷脂酰胆碱。磷脂是两亲性的,其极性头部为亲水性,烃尾为疏水性 [4] 。
摘要:在过去的三十年中,药物分配管理取得了显着发展,并已成为药物开发的重要组成部分。常规药物有一些局限性,例如需要对药物的血浆浓度进行验证,尤其是对于半腔短的药物。经常使用DRU G会导致患者依从性恶化和血浆浓度变化。可以通过开发新药,尤其是受控药物的新药来解决这些挑战,从而使血浆药物在更长的时间内缓慢释放药物来保持稳定。控制药物分布也可以改善药物的生物利用度,从而改善治疗和患者依从性。有许多可控递送的方法,包括Lipos Ome,脂质体,齿状体,植物体,微乳液和微球。在这些配方中,微粒特别好,因为它们会减慢聚合物基质中的药物释放,并且所使用的聚合物大多是可生物降解的,没有副作用。因此,微球用于许多医学领域,例如肿瘤学,放射学,妇科,心脏病学,肺病学,糖尿病和医学。本评论的文章总结了其设计中不同类型的微球和当前进展。此外,可以使用多种方法分析微球并官能化。