引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
简介:许多治疗分子无法穿过血脑屏障 (BBB),且难以渗透到肿瘤组织,导致脑肿瘤治疗面临巨大挑战。为了解决这些障碍,我们开发了一种新型多功能靶向载体,使药物能够穿过 BBB 并靶向脑肿瘤组织。方法:在多功能靶向脂质体中,天然化合物白藜芦醇 (RES) 被整合到脂质体的脂质双层膜中,而对氨基苯基-α-D-甘露糖吡喃苷 (MAN) 和麦芽凝集素 (WGA) 则结合到脂质体表面。然后将抗癌药物表柔比星 (EPI) 装入脂质体中。然后,通过评估粒径、zeta 电位和表观形态来表征脂质体。将WGA和MAN修饰的白藜芦醇表柔比星脂质体应用于体外胶质瘤细胞和BBB模型以及体内C6胶质瘤大鼠。结果:多功能靶向脂质体形圆整,表面光滑,粒径均一。从SRB结果来看,多功能靶向脂质体显示出明显的抑制效果,提示MAN加WGA对脑肿瘤细胞产生了强大的药物递送效果。流式细胞术检测发现,给予WGA和MAN修饰的白藜芦醇表柔比星脂质体后的胶质瘤细胞摄取和凋亡最为明显。在多功能靶向效果实验中,WGA和MAN修饰的白藜芦醇表柔比星脂质体穿过BBB并靶向脑肿瘤细胞的效果最强。荷瘤大鼠应用多功能靶向脂质体后,中位生存期明显长于对照组。结论:WGA和MAN修饰的表柔比星加白藜芦醇脂质体对表柔比星和白藜芦醇跨血脑屏障的转运能力强,对脑胶质瘤具有良好的治疗作用,具有多功能靶向性。关键词:多功能靶向脂质体,血脑屏障,细胞凋亡,白藜芦醇,脑胶质瘤
摘要:甲氨蝶呤 (MTX) 是治疗类风湿性关节炎 (RA) 的一线疗法,然而,其使用可能受到副作用(尤其是注射后不适)的限制。当患者不耐受或反应迟钝时,可能需要二线或抗体疗法。叶酸靶向脂质体制剂 MTX (FL-MTX) 对关节炎爪有亲和性,可预防小鼠胶原诱导性关节炎 (CIA) 的发生。我们将药物与脂质的摩尔比优化为 0.15,并证明了这种形式在每周两次腹膜内 (ip) 注射 2 mg/kg MTX 时的治疗效果。这些改进的脂质体在发炎关节中的存在与爪肿胀程度和骨重塑活性成正比。与游离物质相比,FL-MTX 的肝肾消除率较低。 FL-MTX 腹腔注射或皮下注射 (sc) 的效果相同,每周两次 2 mg/kg FL-MTX(药物/脂质 0.15)在降低小鼠 CIA 模型的发病率和肿胀方面与 35 mg/kg MTX(相同途径和时间表)的效果相似或更有效。这些结果表明,FL-MTX 是一种比游离 MTX 治疗更有效的纳米治疗制剂。它对患者的潜在益处可能包括减少治疗频率和降低给定反应的总剂量。
脂质体是人工制备的具有脂质双层的囊泡,可用作治疗各种癌症和其他疾病的药物载体分子。传统脂质体由于被网状内皮系统快速摄取而半衰期较短,这导致脂质体浓度和药效降低。脂质体被聚乙二醇包裹后,巨噬细胞对脂质体的摄取减少。这被称为隐形效应,可延长脂质体在循环中的半衰期,从而提高药效。被聚乙二醇包裹的脂质体也称为空间稳定脂质体或隐形脂质体。本综述重点介绍隐形脂质体的特点、制备方法、应用、优点和局限性。
摘要。血脑屏障 (BBB) 可能会限制脑部药物输送,而基于脂质体的药物输送策略则可增强脑部药物输送。由于人类大脑的通路有限,许多研究都是在实验动物身上进行的。尽管这些研究提供了有趣的数据,但仍有改进的空间,以便提供机制见解,了解特定 BBB 运输和脑内分布过程的速率和程度,这些过程共同控制着 CNS 靶向输送的游离药物。本综述简要总结了 BBB 运输和当前基于脂质体的克服 BBB 运输限制的策略,重点是如何确定共同决定游离药物脑浓度时间过程的各个机制,包括药物本身和脂质体给药后。重点介绍了使用微透析的动物研究,这些研究提供了血浆和脑中未结合药物的时间过程信息,因为这些研究提供了了解 BBB 药物运输所需的机制信息,以及该药物的脂质体制剂对 BBB 运输的影响。总体而言,这些研究表明,以脂质体制剂形式给药的药物在大脑中的分布取决于药物性质和脂质体制剂特征。一般而言,有证据表明,脂质体绕过了血脑屏障中的主动转运体(无论是流入转运体还是流出转运体)。结论是,脂质体制剂可能会给血脑屏障的转运带来有趣的变化。需要进行更多的机制研究来了解脂质体药物向大脑输送的相关机制,从而为使用动物数据预测人类的药物输送提供更好的基础。
我们使用原子力显微镜(AFM)来测量由不同类型的PC和PG组成的含有不同类型的PC和PG的阴离子OVA 323的刚性,摩尔比为4:1(:1(:2)artearoyl(ds)PC:DS)PC:DSSPG(Young's Modulus(Young's Modulus(Ym)361111111111111111111111111111111 kpa) (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 KPA)和DOPC:DOPG(494±365 kPa)。接下来,我们在体外评估了刚性是否影响脂质体与骨髓衍生的树突状细胞(BMDC)的关联。除了DOPC:DOPG脂质体外,我们观察到脂质体刚性与细胞缔合之间存在正相关。最后,我们表明刚性在鼠DC中的体外和小鼠体内的体外与Treg反应呈正相关。我们的发现突显了AFM对脂质体刚度的适用性,以及将脂质体设计为疫苗输送系统时该参数的重要性。
组分别为(0.25±0.12)G和(517.14±112.63)mm 3(图9 B,C)。自由疼痛的肿瘤抑制作用为7.81%,肿瘤生长抑制效率低下。然而,TF-PL/ACHE的肿瘤重量抑制率为77.47%,而GL/ACHE组的肿瘤抑制率仅为48.21%,TF- PL/ACHE有效抑制了肝癌细胞的生长并减轻了肿瘤的体重。这些结果支持体内TF-PL/ACHE治疗的上抗肿瘤功效。如图9 d所示,HE染色结果表明,在TF-PL/ACHE组肿瘤组织中,GL/ACHE和TF-PL/ACHE组中的肿瘤显示出温和的染色和大面积空白,显示了较大的坏死面积,因此肿瘤组织坏死非常严重。对照组的肿瘤组织和自由疼痛组较暗,显示出可识别的组织。总的来说,TF-PL/ACHE可以有效抑制肿瘤的生长。总的来说,TF-PL/ACHE可以有效抑制肿瘤的生长。
背景:神经胶质瘤是最常见的原发性恶性脑肿瘤,具有可怕的总体生存和高死亡率。临床治疗中最困难的挑战之一是,大多数药物几乎不会穿过血脑屏障(BBB)并在肿瘤部位实现有效的积累。因此,为了避免这一障碍,开发有效穿越BBB药物递送纳米壳的临床重要性非常重要。狂犬病病毒糖蛋白(RVG)是一种衍生肽,可以特异性结合与烟碱乙酰胆碱受体(NACHR)在BBB和胶质瘤细胞上广泛表达,以使狂犬病病毒入侵大脑。受到这一点的启发,RVG已被证明可以增强整个BBB的药物,促进渗透性,并进一步增强药物肿瘤的选择性和穿透性。方法:在这里,我们使用了从众所周知的RVG29进行重新分组的RVG15,以开发针对脑靶向的脂质体(RVG15-LIPO),以增强BBB的透气性和paclitaxel(PTX)的肿瘤特异性递送。制备紫杉醇 - 胆固醇复合物(PTX-CHO),然后积极地加载到脂质体中以获得高夹层效率(EE)和良好的稳定性。同时,对物理化学特性,体外和体内递送效率和治疗效应进行了彻底研究。结果:PTX-CHO-RVG15-LIPO的粒径和ZETA电位分别为128.15±1.63 nm和-15.55±0.78 mV。与游离PTX相比,PTX-CHO-RVG15-LIPO在HBMEC和C6细胞中表现出极好的靶向效率和安全性,并且在BBB的体外模型中的运输效率更好。此外,PTX-CHO-RVG15-LIPO可以明显改善PTX在大脑中的积累,然后根据基于体内成像分析的C6 Luc Orthotopic Glioma中的化学治疗药物渗透。体内抗肿瘤结果表明,PTX-CHO-RVG15-LIPO显着抑制了神经胶质瘤的生长和Metabasis,因此提高了具有不利影响的肿瘤小鼠的存活率。结论:我们的研究表明,由于BBB渗透和肿瘤靶向能力,RVG15是一种有前途的脑靶向特定配体。基于体外和体内出色的治疗效果,PTX-CHO-RVG15-LIPO被证明是PTX治疗临床上神经胶质瘤的潜在输送系统。关键字:神经胶质瘤,血液 - 脑屏障,RVG15,脂质体,紫杉醇
1 北京大学深圳医院乳腺外科,深圳 518036;songzhuqing@163.com 2 中国科学院深圳先进技术研究院生物医学与健康工程研究所 Paul C. Lauterbur 生物医学成像研究中心,深圳 518055;xiuxian_huang@163.com (XH);fy.cai@siat.ac.cn (FC) 3 中国科学院深圳先进技术研究院深圳合成生物研究所,中国科学院定量工程生物学重点实验室细胞与基因电路设计中心,深圳 518055;jq.wang@siat.ac.cn 4 广州中医药大学第一附属医院超声科,广州 510405 fei.yan@siat.ac.cn (FY);电话:+86-755-8639-2284 (FY);传真:+86-755-9638-2299 (FY)† 这些作者对本文的贡献相同。