摘要 — 双边遥控操作为人形机器人提供了人类的规划智能,同时使人类能够感受到机器人的感受。它有可能将具有物理能力的人形机器人转变为动态智能的机器人。然而,由于涉及复杂的动力学,动态双边运动遥控操作仍然是一个挑战。这项工作介绍了我们通过身体倾斜的轮式人形机器人运动遥控概念应对这一挑战的初步步骤。具体来说,我们开发了一种具有力反馈能力的全身人机界面 (HMI),并设计了一个力反馈映射和两个遥控映射,将人体倾斜映射到机器人的速度或加速度。我们比较了这两种映射,并通过实验研究了力反馈的效果,其中七个人类受试者用 HMI 遥控一个模拟机器人执行动态目标跟踪任务。实验结果表明,所有受试者在练习后都完成了两种映射的任务,力反馈提高了他们的表现。然而,受试者表现出两种不同的远程操作风格,它们从力反馈中获益的方式也不同。此外,力反馈影响了受试者对远程操作映射的偏好,尽管大多数受试者在速度映射方面表现更好。
“我喜欢 Polhemus G 4 追踪器,因为和 Virtusphere 一样,它最接近自然环境。”Ray Latypov,Virtusphere 首席执行官 想象一下,踏入一个看起来像人形沙鼠轮的东西,完全沉浸在被球体包裹的虚拟现实世界中——只需单击按钮,这个球体就会改变您的整个环境。有无数可能的场景可供探索,您可以进行挑战极限的艰苦越野跑,游览莫斯科的城市景点,甚至在分秒必争的战场上测试您的反应能力。这些场景都是通过虚拟现实运动模拟器 Virtusphere 实现的。Virtusphere 利用 Polhemus G 4™ 6DOF 无线运动追踪器,因为它具有便携性、无缝追踪功能以及提供位置和方向的事实。 Ray Latypov 演示 Virtusphere 的功能 工作原理 — 完全沉浸感 Latypov 兄弟是 Virtusphere 背后的智囊。Virtusphere 首席执行官 Ray Latypov 和首席技术官 Allan Latypov 开发了这个想法并完善了 Virtusphere 产品。它的工作原理类似于计算机鼠标上的巨型轨迹球。10 英尺的空心球安装在一个特殊平台上,允许用户 360 度自由旋转。用户佩戴头戴式显示器,球体设计允许他们行走、跳跃或奔跑,因为他们完全沉浸在虚拟环境中。无线 G 4 为用户提供完全自由
MMX(火星卫星探测)是日本宇宙航空研究开发机构 (JAXA)、法国国家空间研究中心 (CNES) 和德国航空航天中心 (DLR) 的机器人采样返回任务,计划于 2024 年发射。该任务旨在解答火卫一和火卫二的起源问题,这也有助于了解太阳系早期的物质运输,以及水是如何被带到地球的。除了负责采样和样品返回地球的 JAXA MMX 母舰外,CNES 和 DLR 还建造了一辆小型火星车,用于降落在火卫一上进行现场测量,类似于龙宫上的 MASCOT(移动小行星表面侦察车)。MMX 火星车是一个四轮驱动的自主系统,尺寸为 41 厘米 x 37 厘米 x 30 厘米,重约 25 公斤。火星车车身上集成了多种科学仪器和摄像机。火星车车身呈矩形盒状。侧面连接着四条腿,每条腿上有一个轮子。当火星车与母舰分离时,腿会折叠在一起,放在火星车车身的侧面。当火星车被动着陆(没有降落伞或制动火箭)在火卫一上时,腿会自动移动,使火星车保持直立状态。火卫一的一个白天相当于 7.65 个地球小时,在为期三个月的总任务时间内,会产生大约 300 个极端温度循环。这些循环和昼夜之间较大的表面温度跨度是火星车的主要设计驱动因素。本文详细介绍了 MMX 火星车运动子系统的开发
图1。我们提出的框架ABS展示了敏捷和无碰撞的运动能力,其中具有全部计算和感应的机器人可以安全地浏览混乱的环境,并迅速对室内和室外的多样化和动态障碍做出迅速反应。ABS涉及双政策设置:底部的绿线表示敏捷政策的控制,红线表示运行中的恢复策略。敏捷政策使机器人能够在障碍物中快速运行,而恢复政策可以使机器人摆脱敏捷政策可能失败的风险案例。子图:(a)机器人躲避了摇摆的人腿。(b)敏捷政策使机器人能够以3的峰值运行。1 m/s。(c)在高速运动期间,机器人躲避了移动的婴儿车。(d)机器人在白雪皑皑的地形中躲过一个动人的人。(e)机器人安全地在大厅内坐着静态和动态障碍物,平均速度为2。1 m/s,峰速度为2。9 m/s。(f)机器人避免在昏暗的走廊中的障碍和移动人类,平均速度为1。5 m/s,峰值速度为2。5 m/s。 (g)机器人,平均速度为2。 3 m/s,峰值速度为3。 0 m/s,避免移动和静态垃圾箱,并爬上草坡。 视频:请参阅网站。5 m/s。(g)机器人,平均速度为2。3 m/s,峰值速度为3。0 m/s,避免移动和静态垃圾箱,并爬上草坡。视频:请参阅网站。
为了寻找运动任务中深度强化学习的简单基线,我们提出了一种无模型的开环策略。通过利用先验知识和简单振荡器的优雅来产生周期性的关节动作,它在五个不同的运动环境中实现了可观的性能,其中许多可调参数是DRL算法通常所需的数千分之一。我们使用开环振荡器进行了两个其他实验,以确定这些算法的当前缺点。我们的结果表明,与基线相比,DRL暴露于传感器噪声或故障时,DRL更容易降解。此外,我们使用弹性四足动物展示了从模拟到现实的成功转移,其中RL在没有随机或奖励工程的情况下失败。总体而言,拟议的基线和协会实验突出了DRL在机器人应用中的现有局限性,提供了有关如何解决它们的见解,并鼓励对复杂性和一般性的成本进行反思。
3学习步态过渡的基于模型的最佳控制21 3.1动机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.2相关文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.3基于模型的控制器。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.3.1体系结构概述。。。。。。。。。。。。。。。。。。。。。。。25 3.3.2步态过渡机制。。。。。。。。。。。。。。。。。。。。。25 3.4学习步态适应政策。。。。。。。。。。。。。。。。。。。。。26 3.4.1控制步态时间。。。。。。。。。。。。。。。。。。。。27 3.4.2 MDP定义。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.5结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 3.5.1适应的步态和速度跟踪。。。。。。。。。。。。。。。31 3.5.2能源效率。。。。。。。。。。。。。。。。。。。。。。。。。。32 3.5.3与相关工作的比较。。。。。。。。。。。。。。。。。。33 3.5.4消融研究。。。。。。。。。。。。。。。。。。。。。。。。。。34 3.6结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36
摘要:不断学习的能力对于机器人获得高水平的智力和自主权至关重要。在本文中,我们考虑针对四足机器人的连续加强学习(RL),其中包括能够不断学习子序列任务(可塑性)并保持先前任务的性能(稳定性)的能力。提出的方法获得的策略使机器人能够依次学习多个任务,同时克服了灾难性的遗忘和可塑性的丧失。同时,它可以实现上述目标,并尽可能少地修改原始RL学习过程。所提出的方法使用Piggyback算法为每个任务选择受保护的参数,并重新定位未使用的参数以提高可塑性。同时,我们鼓励探索政策网络,鼓励策略网络的软网络的熵。我们的实验表明,传统的持续学习算法在机器人运动问题上不能很好地表现,并且我们的算法对RL培训的进度更加稳定,并且对RL培训的进度更少。几个机器人运动实验验证了我们方法的有效性。
摘要 - 腿部机器人控制的最新进展是由无模型的强化学习驱动的,但我们探索了可区分模拟的潜力。不同的模拟有望更快地收敛和更稳定的训练,但是到目前为止,其用于腿部机器人控制的使用仍然限于模拟。可区分仿真的主要挑战在于由于接触良好的环境中的不连续性(例如四倍的运动)而导致机器人任务的复杂优化土地。这项工作提出了一个新的,可区分的模拟框架来克服这些挑战。关键思想涉及将复杂的全身仿真解耦,该模拟可能由于接触而表现出不连续性,分为两个单独的连续域。随后,我们将简化模型产生的机器人状态与更精确,不可差的模拟器对齐,以保持足够的模拟精度。我们的框架可以使用单个模拟机器人在几分钟内学习四足动物,而无需任何并行化。随着GPU并行化的增强,我们的方法允许四倍的机器人在挑战地形上掌握各种各样的机车技巧,包括小跑,步伐,绑定和gallop。此外,我们的政策在现实世界零击中实现了强大的运动性能。据我们所知,这项工作代表了使用可区分模拟控制真正四倍的机器人的首次演示。这项工作提供了一些重要的见解,以便在现实世界中使用可区分的模拟进行腿部运动。
摘要 - 在性能和能量限制下的腿部机器人运动的在线学习仍然是一个挑战。的方法,例如随机梯度,深度增强学习(RL),已经针对双子,四倍和六脚架进行了探索。这些技术在计算密集程度上,因此很难在边缘计算平台上实施。这些方法在能源消耗和吞吐量方面也是不足的,因为它们依赖复杂的传感器和数据预处理。另一方面,神经形态范围(例如尖峰神经网络(SNN))在边缘智能上的低功率计算中变得越来越有利。snn表现出具有突触的仿生峰值时间依赖性可塑性(STDP)的强化学习机制的能力。但是,尚未探索训练腿部机器人以中央模式发生器(CPG)在SNN框架中生成的同步步态模式行走。这种方法可以将SNN的效率与基于CPG的系统的同步运动相结合 - 提供了移动机器人技术中端到端学习的突破性绩效。在本文中,我们提出了一种基于增强的随机学习技术,用于培训刺激CPG的六型固醇机器人,该机器人学会了在没有先验知识的情况下使用生物风格的三脚架步态行走。整个系统是在具有集成传感器的轻质Raspberry Pi平台上实现的。我们的方法在有限的边缘计算资源中为在线学习打开了新的机会。
摘要:这项工作探讨了使用可区分的模拟进行四足运动的潜力。可区分的模拟通过使用机器人动力学计算低变化的一阶梯度来承诺快速转化和稳定训练。但是,它对腿部机器人的使用仍然仅限于模拟。主要挑战在于由于不连续动态而引起的机器人任务的复杂优化格局。这项工作提出了一个新的可区分类似框架来克服这些挑战。我们的方法结合了用于正向动力学的高保真度,非差异的模拟器,简化的表面模型用于梯度后传播。这种方法通过将替代模型的机器人状态与精确的,不可差的模拟器对齐来保持模拟精度。我们的框架使学习可以在几分钟内在仿真中学习四倍,而无需并行化。随着GPU并行化的增强,我们的方法允许四倍的机器人在几分钟内在挑战地形上掌握各种运动技能。我们证明,可差异的模拟通过实现明显提高样品效率的同时,在处理大规模环境中的有效性时,可以优于强化学习算法(PPO)。我们的方法代表了可区分模拟到现实世界四倍的机车运动的第一个成功应用之一,它为传统RL方法提供了令人信服的替代方案。视频:https://youtu.be/wenq_w715xm