许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
对照载体转染的 LNCaP-ctl 细胞(图 1C)。为了测试 KDM4B 在 PCa 进展中的临床相关性,我们对接受雄激素剥夺疗法的局部或转移性激素敏感性 PCa(AJCC III 期和 IV 期)患者的前列腺活检组织样本进行了 KDM4B 表达染色。在肿瘤样本中观察到显著的 KDM4B 染色,而在正常组织中发现的染色很少(图 1D)。KDM4B 表达较高的患者的存活率明显较短(图 1E)。我们在体内测试了 KDM4B 过表达的影响。在注射 LNCaP-4B 细胞的小鼠中观察到 30% 的肿瘤形成率,而注射对照 LNCaP-ctl 细胞的小鼠没有肿瘤(图 1F)。LNCaP-4B 细胞未能在阉割动物中形成肿瘤(未显示数据)。
成功治疗癌症的一个主要混杂问题是抗治疗剂和方案的肿瘤细胞群体存在。虽然巨大的努力一直在理解对每种传统和有针对性治疗的耐药性的生化机制,但对问题的更广泛的方法可能从认识到现有的抗癌剂几乎通过细胞凋亡几乎完全引起其细胞毒性作用的认识而出现。考虑到癌细胞颠覆凋亡死亡的众多机制,一种有吸引力的替代方法将利用编程的坏死机制来促成诱导细胞凋亡剂的侧键治疗性。溶酶体细胞死亡(LCD)是一种编程的坏死细胞死亡机制,在溶酶体的极限膜的妥协中参与,这一过程称为溶酶体膜通透性(LMP)。在LMP上将溶酶体成分释放到细胞质中,触发生化级联反应,导致质膜破裂和坏死细胞死亡。有趣的是,细胞转化的过程似乎使肿瘤细胞的溶酶体膜比非转化细胞更脆弱,从而为药物发育提供了潜在的治疗窗口。在这里,我们概述了LMP和LCD的概念,并讨论了代理参与这些过程的策略。重要的是,现有的阳离子两亲性药物的潜力存在,例如抗抑郁药,抗生素,抗心律失常和利尿剂,以重新使用,以使LCD参与治疗耐药性肿瘤细胞种群。
简介 在过去十年中,纳米材料科学中的药物知识得到了快速发展。医学纳米技术是纳米技术在医学中的应用,涉及药物输送系统、疾病检测方法、新产品(如纳米机器人和人造组织)的引入等问题,其目的是通过发展医疗保健领域的深思熟虑和重大变革来提高生活质量。纳米科学在纳米医学中的应用,更具体地说是在药物科学领域的应用,用于药物纳米载体在疾病管理和癌症治疗中的创新,将迅速普及。1-5 在这一领域,已经通过探索多种载体和方法探索了靶向药物输送以用于名义癌症治疗。6-8
摘要:对化疗药物和靶向药物的耐药性是成功治疗癌症的主要问题之一。已发现各种机制导致耐药性。其中一种机制是溶酶体介导的耐药性。溶酶体已被证明可以捕获某些疏水性弱碱性化疗药物以及一些酪氨酸激酶抑制剂,从而将其隔离在细胞内靶位之外。在大多数情况下,溶酶体隔离之后,其内容物会通过胞吐作用从细胞中释放出来。抗癌药物在溶酶体中的积累主要是由离子捕获引起的,但也有描述某些药物主动转运到溶酶体的情况。溶酶体低 pH 值是离子捕获所必需的,这是通过 V-ATPase 的活性实现的。在实验条件下,溶酶体趋化剂和 V-ATPase 抑制剂可以成功抑制这种隔离。临床试验仅对溶酶体药物氯喹进行了试验,结果不太成功。本综述的目的是概述溶酶体隔离和酸化酶的表达(癌细胞化学抗性的尚不为人所知的机制)以及如何克服这种形式的抗性的可能性。
应尽可能避免或减少废物的产生。本产品、溶液和任何副产品的处理应始终符合环境保护和废物处理法规的要求以及任何当地政府的要求。通过有执照的废物处理承包商处理剩余和不可回收的产品。除非完全符合所有管辖当局的要求,否则废物不应未经处理就排入下水道。废弃包装应回收利用。只有在无法回收时才应考虑焚烧或填埋。必须以安全的方式处理本材料及其容器。空容器或内衬可能会保留一些产品残留物。避免溢出材料散布和径流,并接触土壤、水道、排水沟和下水道。
溶酶体贮积症 (LSD) 是一类由 70 种代谢紊乱组成的疾病,其特征是溶酶体蛋白突变导致贮积物积聚、多器官病变(通常涉及神经退化)以及大量患者的早期死亡。除了需要更有效的治疗方法外,还存在着对疾病病因的进一步了解,这可能揭示新的途径和药物靶点。在过去的几十年里,随着诱变技术的进步显著提高了哺乳动物和非哺乳动物系统中模型生成的效率,模型生物的研究促进了对疾病相关途径的了解。在本综述中,我们重点介绍了 LSD 的非哺乳动物模型,特别关注斑马鱼,这是一种脊椎动物模型生物,与哺乳动物具有显著的遗传和代谢相似性,同时还具有独特的优势,例如光学透明性和适合高通量应用。我们研究已发表的斑马鱼 LSD 模型及其报告的表型,探讨特定生物体的优势和局限性,并讨论可能提供潜在解决方案的最新技术创新。
摘要:研究弓形虫裂解物 (TLA exo) 刺激的树突状细胞衍生外泌体与霍乱毒素混合作为佐剂,在通过两种黏膜途径 (眼部和鼻内) 免疫的小鼠中的免疫原性。BALB/c 小鼠每隔 2 周注射 3 次 TLA exo 疫苗,并测量血清中的 IgG 水平以及泪液、唾液、粪便和阴道洗液中的 IgA 水平。为观察弓形虫特异性 B1 基因的表达,用 TLA exo 或 PBS exo (未用 TLA 刺激) 免疫感染 ME49 弓形虫囊肿的小鼠,并检查其脑组织。与仅用 PBS 处理的小鼠相比,通过鼻内途径接种的小鼠引起的体液和黏膜免疫反应明显更高。此外,与 PBS 对照组相比,通过眼部途径(滴眼液)接种的小鼠血清中弓形虫特异性 IgG 和泪液和粪便中的 IgA 含量明显更高。TLA exo 疫苗接种小鼠的 B1 基因表达明显低于 PBS 或 PBS exo 疫苗接种小鼠。这些结果表明,用 TLA exo 疫苗对小鼠进行眼部免疫有可能刺激全身或局部抗体反应。这项研究还强调了滴眼液疫苗作为弓形虫鼻腔疫苗替代品的优势。
摘要:由于表面暴露的赖氨酸的固有反应性低且在整个蛋白质组中普遍存在,因此对其进行靶向共价修饰具有挑战性。优化可逆结合抑制剂 ( k inact ) 共价键形成速率的策略通常涉及提高亲电试剂的反应性,这会增加离靶修饰的风险。在这里,我们采用了一种替代方法来提高赖氨酸靶向共价 Hsp90 抑制剂的 k inact ,而不依赖于可逆结合亲电性 ( K i ) 或固有亲电性。从非共价配体开始,我们附加了一个手性、构象受限的连接体,它使芳基磺酰氟与 Hsp90 表面的 Lys58 快速且对映选择性地发生反应。共价和非共价配体/Hsp90 复合物的生化实验和高分辨率晶体结构提供了有关配体构象在观察到的对映选择性中的作用的机制见解。最后,我们展示了细胞 Hsp90 的选择性共价靶向,尽管共价配体/Hsp90 复合物同时降解,但仍会导致热休克反应延长。我们的工作突出了设计配体构象约束的潜力,可以大大加速蛋白质靶标表面远端、亲核性较差的赖氨酸的共价修饰。■ 简介共价抑制剂作为药物、细胞生物学工具和化学蛋白质组学探针具有广泛的用途。不可逆的共价修饰导致药物-靶标停留时间与靶蛋白的寿命相匹配,通常与药物清除率无关。 1、2 此外,共价抑制剂可以通过与配体结合位点内或附近的非保守亲核氨基酸反应来区分密切相关的旁系同源物。3 − 8 目标亲核试剂的选择性修饰由两步反应机制决定,其中配体的可逆结合先于共价修饰。可逆结合亲和力和最初形成的非共价复合物内共价键形成的速率 ( k inact ) 都会影响共价抑制剂的效力。9 增加 k inact 的一个明显方法是增强亲电试剂的固有反应性。这种方法的缺点是它增加了发生不良的脱靶反应的可能性。因此,共价抑制剂的优化主要依赖于最大化非共价识别元素的可逆结合亲和力。 10,11 迄今为止,快速作用、高选择性共价配体的设计主要集中在半胱氨酸上,部分原因是其高内在反应性允许使用相对不活泼的亲电试剂(例如丙烯酰胺)。12 − 14 然而,半胱氨酸是蛋白质组中最不常见的氨基酸之一,许多配体结合位点缺乏近端半胱氨酸。