ARAF,A-RAF原始癌基因,丝氨酸/苏氨酸激酶; BRAF,V-RAF鼠类肉瘤病毒癌基因同源物B1; BRAFI,BRAF抑制剂;中枢神经系统,中枢神经系统; CRAF,原始癌基因C-RAF; DOR,响应持续时间; HGG,高级神经胶质瘤; LGG,低级神经胶质瘤; MAPK,有丝分裂原激活的蛋白激酶; Meki,MAPK激酶抑制剂; MOA,作用机理; ORR,客观响应率; RAF,快速加速的纤维肉瘤。 1。 BouchèV等。 前Oncol 2021; 11:772052; 2。 Andrews LJ等人。 Neuro Oncol 2022; 24:528–40; 3。 Kaley T等。 J Clin Oncol 2018; 36:3477–84; 4。 tafinlar。 处方信息。 诺华; 2013。 2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。 Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。 Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。ARAF,A-RAF原始癌基因,丝氨酸/苏氨酸激酶; BRAF,V-RAF鼠类肉瘤病毒癌基因同源物B1; BRAFI,BRAF抑制剂;中枢神经系统,中枢神经系统; CRAF,原始癌基因C-RAF; DOR,响应持续时间; HGG,高级神经胶质瘤; LGG,低级神经胶质瘤; MAPK,有丝分裂原激活的蛋白激酶; Meki,MAPK激酶抑制剂; MOA,作用机理; ORR,客观响应率; RAF,快速加速的纤维肉瘤。1。BouchèV等。前Oncol 2021; 11:772052; 2。Andrews LJ等人。 Neuro Oncol 2022; 24:528–40; 3。 Kaley T等。 J Clin Oncol 2018; 36:3477–84; 4。 tafinlar。 处方信息。 诺华; 2013。 2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。 Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。 Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Andrews LJ等人。Neuro Oncol 2022; 24:528–40; 3。Kaley T等。J Clin Oncol 2018; 36:3477–84; 4。tafinlar。处方信息。诺华; 2013。2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Chen P等。Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Onco Targets Ther 2017; 10:5391–403; 7。Garutti M等。癌症2023; 15:141; 8。Yao Z等。nat Med 2019; 25:284–91; 9。Tutuka CSA等。 Mol Cancer 2017; 16:112。Tutuka CSA等。Mol Cancer 2017; 16:112。Mol Cancer 2017; 16:112。
摘要:通过激活诸如MAP激酶和NF-κB信号途径等细胞内信号传导途径的激活,类似Toll样受体(TLR)诱导先天免疫反应,并在针对细菌或病毒感染的宿主防御中起重要作用。同时,TLR信号的过度激活导致各种炎症性疾病,包括自身免疫性疾病。TLR信号传导以平衡最佳免疫反应和炎症。但是,其平衡机制尚未完全理解。在这项研究中,我们将E3泛素连接酶lincr/ neurl3识别为TLR信号传导的关键调节剂。在有效的细胞中,因激动剂诱导的TLR3,TLR4和TLR5引起的JNK和p38 MAPK的持续激活显然被减弱。与这些观察结果一致,TLR诱导的一系列炎性细胞因子的产生显着减弱,这表明LINCR通过促进JNK和P38的激活来积极调节先天免疫反应。有趣的是,我们进一步的机械研究确定了MAP激酶的负调节剂MAPK磷酸酶-1(MKP1),是LINCR的泛素化靶标。因此,我们的结果表明,通过平衡LINCR(阳性调节剂)和MKP1(阴性调节器),TLR可以激活MAP激酶途径,这可能有助于诱导最佳免疫反应。
组合疗法需要通过重新布线冗余途径来治疗已经对单层抗性的晚期癌症患者。由于潜在的药物组合数量,需要采用系统的方法来使用成本效益的方法来确定每个患者的安全有效组合。在这里,我们开发了一种精确的多目标优化方法,用于识别显示最大癌症选择性的成对或高阶组合。患者特异性组合的优先级是基于组合的治疗和非选择性效应所跨越的搜索空间中的帕累托优化。我们在BRAF-V600E黑色素瘤治疗中证明了该方法的表现,在那里,Optimal Solutions预测了vemurafenib批准的vemurafenib的许多共同抑制伙伴,Vemurafenib是一种选择性的BRAF-V600E抑制剂,批准了晚期黑色素瘤。我们通过实验验证了BRAF-V600E黑色素瘤细胞系中的许多预测,结果表明,通过使用成对和第三阶药物组合的MAPK/ERK和其他补偿途径组合,通过将MAPK/ERK和其他补偿途径组合进行组合来改善BRAF-V600E黑色素瘤细胞的选择性抑制。我们的机理 - 不足的优化方法广泛适用于各种癌症类型,它仅作为对成对药物组合的子集的输入测量,而无需目标信息或基因组谱。此类数据驱动的方法可能对超出癌症遗传依赖性范式的功能精度肿瘤应用有用,以优化癌症选择性的组合治疗。
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
SYHX1901 JAK/Syk 抑制剂 石药集团 斑块状银屑病 ; 白癜风 / II 期 类风湿性关节炎 ; 系统性红斑狼疮 / I 期 TOP1288 p38 MAPK/Src/Syk 抑制剂 TopiVert 溃疡性结肠炎 II 期 / cevidoplenib Syk 抑制剂 Genosco 免疫性血小板减少症 ; 类风湿性关节炎 II 期 / lanraplenib Syk 抑制剂 吉利德 干燥综合征 ; 狼疮性肾炎 ; 急性髓系白血病 II 期 / mivavotinib Syk/Flt3 抑制剂 Calithera Biosciences 弥漫性大 B 细胞淋巴瘤 II 期 /
博士学位,获得许可,大学/国家年度学年在药学UCM 1985 Phd 1989 in Pharmacy UCM 1989(包括所有必要行)的出版物(包括所有必要行)的出版物中的出版物中的出版物:62(49 Q1(79%),18 D1(29%)H Index:30(研究门)。citaciones:4518(研究门)。研究6年期:6(1987-1992; 1993-1998; 1999-2004; 2005-2010; 2011-2016; 2017-2022)。监督论文:11(总计),5,欧洲或国际上提及。部分B部分CV摘要(最大5000个字符,包括空间)早期职业。 我在生物化学和分子生物学DPT中获得了博士学位。 (BBM)在UCM处。 我的论文专注于研究棕色脂肪组织(BAT)胚胎发育。 然后,我在E. Santos博士(美国国家癌症研究所)的支持后逗留,并得到了全面奖学金的支持,发现了RAS作为胰岛素诱导的脂肪形成的调解人的新功能(Benito,Porras,Porras等人 (1991)科学253,565)和RAF/ERK Pathway,这导致了8个其他出版物(Porras等人 (1992)。 J. Biol。 化学。 267,21124; Porras等。 (1994)。 J. Biol。 化学。 269,12741等)。 然后,我返回BBM DPT。 (UCM),我在细胞信号中应用知识来定义蝙蝠中MAPK的功能,该功能生成了几个出版物,负责工作(例如 valladares ..*Porras,A。 (2000)。 内分泌学141,4383; Porras等人(1998)。 mol。 内分泌。 12,825; *Porras等。 (2003)。 内分泌学。5000个字符,包括空间)早期职业。我在生物化学和分子生物学DPT中获得了博士学位。(BBM)在UCM处。 我的论文专注于研究棕色脂肪组织(BAT)胚胎发育。 然后,我在E. Santos博士(美国国家癌症研究所)的支持后逗留,并得到了全面奖学金的支持,发现了RAS作为胰岛素诱导的脂肪形成的调解人的新功能(Benito,Porras,Porras等人 (1991)科学253,565)和RAF/ERK Pathway,这导致了8个其他出版物(Porras等人 (1992)。 J. Biol。 化学。 267,21124; Porras等。 (1994)。 J. Biol。 化学。 269,12741等)。 然后,我返回BBM DPT。 (UCM),我在细胞信号中应用知识来定义蝙蝠中MAPK的功能,该功能生成了几个出版物,负责工作(例如 valladares ..*Porras,A。 (2000)。 内分泌学141,4383; Porras等人(1998)。 mol。 内分泌。 12,825; *Porras等。 (2003)。 内分泌学。(BBM)在UCM处。我的论文专注于研究棕色脂肪组织(BAT)胚胎发育。然后,我在E. Santos博士(美国国家癌症研究所)的支持后逗留,并得到了全面奖学金的支持,发现了RAS作为胰岛素诱导的脂肪形成的调解人的新功能(Benito,Porras,Porras等人(1991)科学253,565)和RAF/ERK Pathway,这导致了8个其他出版物(Porras等人(1992)。J. Biol。 化学。 267,21124; Porras等。 (1994)。 J. Biol。 化学。 269,12741等)。 然后,我返回BBM DPT。 (UCM),我在细胞信号中应用知识来定义蝙蝠中MAPK的功能,该功能生成了几个出版物,负责工作(例如 valladares ..*Porras,A。 (2000)。 内分泌学141,4383; Porras等人(1998)。 mol。 内分泌。 12,825; *Porras等。 (2003)。 内分泌学。J. Biol。化学。267,21124; Porras等。(1994)。J. Biol。 化学。 269,12741等)。 然后,我返回BBM DPT。 (UCM),我在细胞信号中应用知识来定义蝙蝠中MAPK的功能,该功能生成了几个出版物,负责工作(例如 valladares ..*Porras,A。 (2000)。 内分泌学141,4383; Porras等人(1998)。 mol。 内分泌。 12,825; *Porras等。 (2003)。 内分泌学。J. Biol。化学。269,12741等)。然后,我返回BBM DPT。(UCM),我在细胞信号中应用知识来定义蝙蝠中MAPK的功能,该功能生成了几个出版物,负责工作(例如valladares ..*Porras,A。(2000)。内分泌学141,4383; Porras等人(1998)。mol。内分泌。12,825; *Porras等。(2003)。内分泌学。144(12):5390)。我还在欧洲分子生物学实验室(德国)的A. R. Nebreda博士(1998-2000)的A. R. R.
目的:KLK7,也称为kallikrein 7,是一种分泌的酶,被分类为丝氨酸蛋白酶。较早的研究表明,KLK7,KLK10和KLK11与甲状腺乳头状甲状腺癌(PTC)个体的存活率和免疫反应有关。本研究检查了KLK7,研究其作用和表达,并评估其作为PTC治疗靶标的生存能力。方法:最初,我们使用生物信息学技术检查了KLK7在PTC中的表达和可能功能。研究人员检查了KLK7对PTC癌症特征的影响,并探讨了KLK7是否使用PTC中的MAPK/ERK途径使用免疫组织化学和生长曲线分析来影响上皮 - 间质转变(EMT)过程。最终,进行了使用裸鼠的模型,以确认KLK7对PTC的影响。结果:我们的研究表明,KLK7在THCA组织中表现出差异,而KLK7相关的基因具有参与PTC的蛋白质合成,遗传变异,mRNA降解和免疫微环境的作用。klk7在PTC组织中被上调,并与临床阶段和淋巴结转移呈正相关。此外,KLK7的抑制显着降低了PTC细胞的增殖,迁移和侵入性。值得注意的是,沉默的KLK7降低了ERK1/2的磷酸化和EMT的抑制。体内实验进一步支持了这些发现。klk7可能是PTC患者的有效治疗靶标和预测性生物标志物。KLK7似乎是针对PTC治疗的有前途的候选人。结论:通过通过MAPK/ERK信号通路影响EMT,KLK7可能在PTC的癌变中至关重要,从而影响PTC细胞的生长,迁移和侵入性。
[摘要]传统上,Triverygium hypoglaucum(levl。)Hutch(Thh)被广泛用于中国人治疗类风湿关节炎(RA)。这项研究旨在研究THH的抗RA效应是否与肠道菌群有关。通过HPLC-MS鉴定出准备的Thh提取物的主要组合。用佐剂提取物治疗带有辅助性关节炎(AIA)的C57BL/6小鼠通过gavage处理一个月。提取物可显着缓解AIA小鼠的踝关节肿胀,关节腔渗出和关节软骨破坏。肌肉和血浆中炎症介质的mRNA和蛋白质水平表明,通过阻止TLR4/MYD88/MAPK信号通路,可以通过阻断关节中的炎症反应减弱。提取物明显恢复了AIA小鼠中肠道菌群的营养不良,以双歧杆菌,Akkermansia和乳酸杆菌的增加以及丁甲酸,副翅目,副翅目和腹膜的降低为特征。此外,改变的细菌与生理指数密切相关,并驱动了肠道菌群的代谢变化。此外,还采用了抗生素诱导的无菌细菌小鼠来验证肠道菌群的作用。令人惊讶的是,这种治疗未能改善无伪细菌小鼠的关节炎症状和信号传导途径,这验证了肠道菌群的必不可少的作用。首次证明了Thh提取物通过操纵肠道菌群并调节TLR4/MYD88/MAPK信号通路来保护关节炎症。因此,Thh提取物可以用作微生物调节剂,以回收斜角实践中的ra。
摘要β2-肾上腺素能受体(β2-AR)是G蛋白偶联受体(GPCR),参与许多癌症的发展,其中包括HNSCC。在本竞赛中,β2-AR信号传导与通常被TK受体激活的不同途径(例如PI3K和MAPK)相互作用。因此,TK封锁是HNSCC患者中最采用的治疗策略之一。在我们的研究中,我们使用选择性抑制剂ICI118,551(ICI)研究了β2AR阻断在HNSCC细胞系中的影响,并与MAPK抑制剂U0126结合使用。我们发现ICI导致p38和NF-KB致癌途径的阻塞,也强烈影响ERK和PI3K途径。与U0126的合作构成对细胞活力和途径改变的协同作用。有趣的是,我们发现β2-AR阻滞会影响NRF2-KEAP1稳定性及其核易位,从而导致ROS急剧增加和氧化应激。我们的结果通过TCGA数据集分析确认,表明NFE2L2基因通常在HNSC中过表达,并且与较低的存活率相关。在我们的系统中,PI3K途径抑制作用最终导致促进生存自噬,这是癌细胞通常采用的一种机制,以较少对疗法的反应。在HNSC中通常上调的MTOR表达在患有疾病疾病的患者中降低。众所周知,MTOR具有强大的自噬抑制作用,因此其下调促进了促生寿命自噬,并具有相关的增加复发率。我们的发现的亮点在第一次的HNSCC细胞增殖和耐药性中的β2-AR和相关途径的关键作用是一种有价值的治疗分子靶标。
图2他汀类药物抑制激酶的作用。抑制膜结合的EGFR,HER2和MET激酶以及辛伐他汀的胞质激酶SRC,通过改变PI3K/AKT,MAPK和JAK/STAT途径来影响细胞的增殖,存活和迁移。抑制SRC还通过阻碍辅酶Q10的负载来减少能量产生。所有这些干扰都会损害肌肉修复,并导致他汀类药物相关的肌病。辛伐他汀还通过通过抑制IKK来阻断NF-κB途径来损害TNF-α诱导的凋亡。描绘了每种激酶的IC 50,以及辛伐他汀在肌肉中可能达到的最大浓度。
