基于测量的量子计算 (MBQC) 为设计量子算法提供了一种独特的范式。事实上,由于量子测量固有的随机性,MBQC 中的自然操作不是确定性和单一的,而是增加了概率副产品。然而,到目前为止,MBQC 的主要算法用途是完全抵消这种概率性质,以模拟电路模型中表达的单一计算。在这项工作中,我们建议设计包含这种固有随机性的 MBQC 算法,并将 MBQC 中的随机副产品视为计算资源。作为随机性可以带来好处的自然应用,我们考虑生成建模,这是机器学习中以生成复杂概率分布为中心的任务。为了完成这项任务,我们提出了一种变分 MBQC 算法,该算法配备了控制参数,允许人们直接调整计算中允许的随机性程度。我们的代数和数值结果表明,这种额外的随机性可以显著提高某些生成建模任务的表达能力和学习性能。这些结果凸显了利用 MBQC 固有随机性的潜在优势,并激发了对基于 MBQC 的算法的进一步研究。
摘要对于某些受限制的计算任务,量子力学在任何可能的经典实现方面都提供了可证明的优势。使用了基于测量的量子计算(MBQC)的框架证明了其中几个结果,其中非局部性和更常见的上下文性已被确定为某些量子计算的必要资源。在这里,我们通过在允许的操作和可访问量子的数量上完善其资源需求,从而更详细地考虑MBQC的计算能力。更确切地说,我们确定可以在非自适应MBQC中计算哪些布尔函数,其本地操作包含在Clifford层次结构中的有限级别内。此外,对于限制于某些子理论(例如稳定器MBQC)的非自适应MBQC,我们计算计算给定布尔函数所需的量子数量最少。我们的结果指出了资源的层次结构,这些层次结构更敏锐地描述了MBQC的力量,而不是上下文性与非上下文性的二进制。
在基于测量的量子计算 (MBQC) 中,计算是通过对纠缠态进行一系列测量和校正来完成的。流和相关概念是描述校正对先前测量结果的依赖性的强大技术。我们引入了基于流的量子计算方法,该方法具有连续变量图状态,我们称之为 CV-流。这些方法受到量子比特 MBQC 的因果流和 g-流概念的启发,但不等同于它们。我们还表明,具有 CV-流的 MBQC 在无限压缩极限下可以很好地近似任意幺正,从而解决了无限维设置中不可避免的收敛问题。在开发我们的证明时,我们提供了一种将 CV-MBQC 计算转换为电路形式的方法,类似于 Miyazaki 等人的电路提取方法,以及一种基于 Mhalla 和 Perdrix 的量子比特版本在存在 CV 流时查找 CV 流的有效算法。我们的结果和技术自然扩展到具有素数局部维度的量子位元的 MBQC 量子计算的情况。
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
摘要 基于测量的量子计算 (MBQC) 是一种很有前途的方法,可以减少嘈杂的中型量子算法(例如变分量子特征值求解器 (VQE))中的电路深度。与基于门的计算不同,MBQC 在预先准备的资源状态上使用局部测量,在电路深度和量子比特数之间提供权衡。确保确定性对 MBQC 至关重要,特别是在 VQE 环境中,因为测量模式缺乏流动性会导致在无关位置评估成本函数。本研究介绍了尊重确定性并类似于广泛使用的与问题无关的硬件高效 VQE 假设的 MBVQE 假设。我们使用 Schwinger Hamiltonian 和 XY 模型上的理想模拟来评估我们的方法,并在具有自适应测量功能的 IBM 硬件上进行实验。在我们的用例中,我们发现通过后选择确保确定性比通过自适应测量效果更好,但会增加采样成本。此外,我们提出了一种有效的 MBQC 启发式方法,用于在具有重十六进制连接的硬件上准备资源状态,特别是集群状态,需要单轮测量,并在具有 27 和 127 个量子比特的量子计算机上实现此方案。我们观察到较大集群状态的显着改进,尽管直接基于门的实现对于较小的实例实现了更高的保真度。
在现今的容错量子计算前时代 [1],存在一系列计算理论方案,它们在当前物理设备上实现时表现出一定的优势和不同程度的适用性。奇偶校验量子计算 [2-7] 就是这样一个方案,最初基于量子退火 [2]。通用奇偶校验计算框架 [3] 利用了某种类型的量子态编码(即奇偶校验编码)的属性。这种编码将 n 个量子比特的逻辑状态映射到 n(n+1)=2 个物理量子比特上,其中一些物理量子比特获得与逻辑量子比特子集相关的奇偶校验信息。因此,对这些奇偶校验量子比特进行局部的某些旋转会转化为对相应子集进行多量子比特逻辑旋转 [3]。奇偶校验码是一种稳定器码 [8,9],使用稳定器形式可以很好地理解该码的许多属性。已知稳定器状态和稳定器代码具有规范形式,分别为图状态 [10,11] 和图代码 [12 – 14]。图状态形成一类重要的高度纠缠态,支持基于测量的量子计算 (MBQC) [15 – 20]。MBQC 是一种众所周知的量子电路模型替代方案,由单量子位投影测量而不是幺正门驱动。最近,提出了一种基于测量的编码和解码程序提案,用于奇偶校验计算机制 [21],在计算深度方面表现出有益的特性。由于稳定器代码和图代码之间的密切联系,有必要研究与 MBQC 的潜在联系,我们在本信中开始这项研究。
摘要 基于测量的量子计算 (MBQC) 范式始于高度纠缠的资源状态,通过自适应测量和校正在该状态上执行幺正操作以确保确定性。这与更常见的量子电路模型形成对比,在更常见的量子电路模型中,幺正操作在最终测量之前直接通过量子门实现。在这项工作中,我们将 MBQC 中的概念融入电路模型以创建一种混合模拟技术,使我们能够将任何量子电路拆分为经典高效可模拟的 Clifford 部分和由稳定器状态和局部(自适应)测量指令(即所谓的标准形式)组成的第二部分,该部分在量子计算机上执行。我们进一步使用图状态形式处理稳定器状态,从而显著减少某些应用的电路深度。我们表明,可以使用协议中的完全并行(即非自适应)测量来实现相互交换的运算符组。此外,我们还讨论了如何通过调整资源状态来同时测量相互交换的可观测量组,而不是像在电路模型中那样在测量之前执行昂贵的基础变换。最后,我们通过两个具有高度实际意义的例子证明了该技术的实用性——用于水分子基态能量估计的量子近似优化算法和变分量子特征求解器 (VQE)。对于 VQE,我们发现与标准电路模型相比,使用测量模式可以将深度减少 4 到 5 倍。同时,由于我们结合了同时测量,与在电路模型中单独测量泡利弦相比,我们的模式使我们可以将拍摄次数节省至少 3.5 倍。
MBQC中的一个关键见解是,如果我们要重复上述过程n次,我们可以准备一个纠缠的n- qubit资源状态| γ⟩事先,独立于输入状态| ψ⟩。| γ⟩可以描述为一维的一维纠缠量子,称为1-D簇状态。然后我们可以纠缠| ψ⟩到条的第一个量子,然后仅执行测量值(以及可能单Qubit的Pauli校正,以消除输出对测量结果的依赖性)。因为⟨z=±1 | h =⟨x =±1 | ,您可以说服自己,在CZ 1中,第一个值在X的基础上进行了有效测量。在以下几点中,我们将H门视为计算基础测量之前的H门是“ X测量过程的一部分”。
MBQC 中的一个关键见解是,如果我们想重复上述过程 n 次,我们可以预先准备一个纠缠的 n 量子比特资源状态 | Γ ⟩ ,与输入状态 | ψ ⟩ 无关。| Γ ⟩ 可以被描述为成对纠缠量子比特的一维条带,称为一维簇状态。然后,我们可以将 | ψ ⟩ 纠缠到该条带的第一个量子比特,随后只执行测量(可能还执行单量子比特泡利校正,以消除输出对测量结果的依赖)。由于 ⟨ Z = ± 1 | H = ⟨ X ± 1 | ,你可以确信在 CZ 之后的电路 1 中,第一个量子比特在 X 基础中得到有效测量。在下一点中,我们将计算基础测量之前的 H 门视为“X 测量过程的一部分”。