基于测量的量子计算 (MBQC) 为设计量子算法提供了一种独特的范式。事实上,由于量子测量固有的随机性,MBQC 中的自然操作不是确定性和单一的,而是增加了概率副产品。然而,到目前为止,MBQC 的主要算法用途是完全抵消这种概率性质,以模拟电路模型中表达的单一计算。在这项工作中,我们建议设计包含这种固有随机性的 MBQC 算法,并将 MBQC 中的随机副产品视为计算资源。作为随机性可以带来好处的自然应用,我们考虑生成建模,这是机器学习中以生成复杂概率分布为中心的任务。为了完成这项任务,我们提出了一种变分 MBQC 算法,该算法配备了控制参数,允许人们直接调整计算中允许的随机性程度。我们的代数和数值结果表明,这种额外的随机性可以显著提高某些生成建模任务的表达能力和学习性能。这些结果凸显了利用 MBQC 固有随机性的潜在优势,并激发了对基于 MBQC 的算法的进一步研究。
主要关键词