摘要 基于测量的量子计算 (MBQC) 是一种很有前途的方法,可以减少嘈杂的中型量子算法(例如变分量子特征值求解器 (VQE))中的电路深度。与基于门的计算不同,MBQC 在预先准备的资源状态上使用局部测量,在电路深度和量子比特数之间提供权衡。确保确定性对 MBQC 至关重要,特别是在 VQE 环境中,因为测量模式缺乏流动性会导致在无关位置评估成本函数。本研究介绍了尊重确定性并类似于广泛使用的与问题无关的硬件高效 VQE 假设的 MBVQE 假设。我们使用 Schwinger Hamiltonian 和 XY 模型上的理想模拟来评估我们的方法,并在具有自适应测量功能的 IBM 硬件上进行实验。在我们的用例中,我们发现通过后选择确保确定性比通过自适应测量效果更好,但会增加采样成本。此外,我们提出了一种有效的 MBQC 启发式方法,用于在具有重十六进制连接的硬件上准备资源状态,特别是集群状态,需要单轮测量,并在具有 27 和 127 个量子比特的量子计算机上实现此方案。我们观察到较大集群状态的显着改进,尽管直接基于门的实现对于较小的实例实现了更高的保真度。
主要关键词