阴极。通常,废水被放入阳极室,因为那里有很多微生物,而清水则留在阴极室中。因此,我们可以得到一定量的电压和电流读数。MFC 有一个缺点,就是它需要相当大的质量来产生能量。质量越低,我们得到的能量就越低。在实践中,对于 5 [L] 的废水,测得的最大电压为 1.01 [V](开路电压),恒定电流为 0.2 [mA]。因此,它可以用作电池,因为它产生的电压几乎与锂离子电池相同。然而,考虑到质量较低,MFC 可以用作储能装置。据报道,当多个单独的 MFC 连接成一个堆栈或多电极时,电压和电流会增加,具体取决于连接模式(串联或并联)[6]。MFC 的性能可以通过改变各种因素来改变,例如温度、废水质量、阳极和阴极材料等。
要开始贷款,人力资源及其团队提议最初创建非处置MFC,该非处置MFC将运行三年,并且可以在监管机构批准的情况下将其汇入银行。该计划基于MFC三年的初始操作,我们在MFC业务计划中描述的是分别提交给RWG的MFC业务计划;在此期间,该市将寻求监管部门的批准,以建立联邦存款保险公司(“ FDIC”)和加利福尼亚金融保护与创新部(“ CDFPI”)的银行;并假设经过三年的MFC运营,银行将开始运营,并且MFC的资本,资产和负债将被汇入银行。该银行业务计划描述了从该实体的第4年开始的银行治理,运营和财务。其财务模型从4年初到第8年底提供了五年的预测。必须注意的是,本业务计划中使用的几个假设和MFC业务计划是流动的,并且随着市场,监管和其他条件的发展,可能会随着时间而变化。
摘要:随着世界不断发展和发展,人口也有增长,在这种人口中,人们对能源需求的需求越来越多,以及产生的食物浪费量。因此,非常需要寻找解决这两个问题的解决方案,同时仍然可以遇到贫困家庭。这项研究研究了利用双重培训的微生物燃料电池或MFC利用生物电性的水果,肉类和蔬菜食品废物的潜力。研究人员改编了Sambavi等人的方法。(2021)准备MFC设置。人类尿液是从健康的个体中收集的,作为接种物。MFC设置产生的电压。使用模拟万用表来量化MFC产生的生物电性14(14)天。单向方差分析测试表明,三种类型的MFC没有显示出电力产生的任何显着差异[F(2,39)= 1.307,p = 0.2822]。这表明食物浪费的类型不是影响MFC生物电性产生的关键因素。此外,果实,肉和蔬菜MFC在不同时间段,特别是在第五天,第二和第三天分别达到峰值电压输出。这表明食物浪费的类型决定了MFC达到其峰值电压输出的时间。建议进一步研究以检查三种类型的MFC在产生生物电性方面的潜力。
微生物燃料电池(MFC)引起了极大的兴趣,它是一种使用微生物在阳极的有机和无机材料氧化的技术,以生成生物电性和生物修复。在MFC系统中,可以通过简单分子(乙酸,碳水化合物,葡萄糖等)将各种有机物作为底物获得能量到复杂化合物(糖蜜,纤维素,废水,废物污泥,家庭农业和动物废物等)。除了废水处理外,MFC技术还具有额外的好处,例如去除硫酸盐,去除重金属,反硝化和亚硝化。但是,这些系统的低功率效率和潜在损失限制了其实际规模的适用性。尽管已经在许多不同的参数上详细研究了MFC系统的阳极室,但研究了阴极电子受体的研究相对较少。在MFC系统中,电子受体是影响发电的主要参数之一,因为它们有助于克服阴极的潜在损失。氧气具有相对较高的氧化还原电位,并且是MFC系统中使用的传统电子受体,因为它可以减少以形成像水这样的干净产品。然而,由于向阴极室喂食氧气需要额外的能量,并且由于较慢的O 2降低速率而需要催化剂,因此对替代电子受体的需求增加了。本评论旨在总结MFC系统中使用的各种电子受体,比较其对MFC性能的影响,并讨论可能的未来领域。具有生物能源生产的潜力,并且使用诸如氮种,重金属和高氯酸盐的污染物作为电子受体减少了其特定处理的成本。
摘要:微生物燃料电池(MFC)是一种绿色技术,是化石燃料的替代能源。MFC是具有新型特性的生物电子化学模式的类别,例如废水处理,发电和生物传感器操作。MFC是巧妙的设备,可利用生物电化学工艺的力量来通过打破废水中发现的有机废物来产生电流。这些系统在微生物代谢和产量生产之间建立了引人入胜的联系。MFC中的微生物在其环境中存在的养分上壮成长,并将存储在有机物中的能量转化为可用的电力。该电能可以有效地用来为各种必需的便携式电子设备提供动力,例如手机,笔记本电脑,电视,空气烘干机,螺纹机,可扣除的火炬以及空军,外部空间和天气站中使用的设备。MFC使用铁阳极产生的最大功率为170 MW·M
摘要:微生物燃料电池(MFC)为各种生物技术应用提供了可持续的解决方案,并且是生物技术研究的关键领域。MFC可以通过分解有机物并发电来有效治疗各种垃圾,例如废水和生物柴油废物。某些假单胞菌物种具有细胞外电子转移(EET)途径,使它们能够将电子从有机化合物转移到MFC阳极。此外,假单胞菌物种可以在低氧条件下生长,这是有利的,因为MFC中的电子转移过程通常会导致阳极处的氧气水平降低。这项研究的重点是评估与1 G.L - 1甘油生长的新假单胞菌接种的MFC,这是生物柴油生产的常见副产品。假单胞菌sp。BJA5的最大功率密度为39 mW.m -2。另外,观察到的伏安图和基因组分析表明,BJA5的新型氧化还原介质的潜在产生。此外,我们研究了该细菌作为合成生物学非模型底盘的潜力。通过测试各种遗传部分,包括构成启动子,使用PSEVA载体作为脚手架的复制起源和嘉戈斯,我们评估了细菌的适用性。总的来说,我们的发现提供了利用假单胞菌属的宝贵见解。bja5是MFC的新型底盘。合成生物学方法可以进一步增强该细菌在MFC中的性能,从而提供改进的途径。
在本文中,我们研究了具有基于一般模型的函数近似值的均值控制(MFC)和均值野外游戏(MFC)和均值野外游戏(MFC)的基本统计效率。我们引入了一个称为基于均值模型的Eluder Dimension(MF-MBED)的新概念,该概念构成了均值模型类的固有复杂性。我们表明,富裕的平均RL问题家族表现出低MF膜。此外,我们提出了基于最大似然估计的al-gorithms,它可以返回MFC或MFG的ε-纳什平衡势。总体样品复合物仅取决于多项式膜,该MF膜可能比州行动空间的大小低得多。与先前的作品相比,我们的结果只需要刻薄的假设,包括可靠性和Lipschitz的连续性。
微生物电化学反应可用于合成高附加值化学品和固定CO2等。[7–9] 双向电子转移通过直接电子转移、纳米线转移和穿梭转移等多种自适应途径发生,表明电子转移效率是影响微生物电化学活性的关键因素。[2,5,10] 随着外电极可以有效地作为电子受体或供体被发现,人们对细菌与电极之间双向电子交换的深入探索已经在各种生物电化学系统中创造了新技术,例如微生物燃料电池(MFC)、微生物电解电池(MEC)、微生物海水淡化电池(MDC)和微生物电合成(MES))。 [1,11] 利用生物电化学系统,产电细菌可以革命性地从有机废物中产生可再生生物电,合成高价值化学品和生物燃料,或执行许多其他对环境重要的功能,如生物修复、海水淡化和生物传感。特别是,MFC 中细菌细胞外电子转移 (EET) 过程的利用已引起广泛关注,可替代我们已有 100 年历史的能源密集型有氧技术,成为废水处理方法的替代品。[12–14] 虽然许多可再生、碳中性的能源,如风能、太阳能、地热能和核能,已经开始取代化石燃料,以紧急缓解能源危机和全球变暖,但 MFC 可以更有效地产生清洁电力,同时去除废水中的污染物。为了解决这些紧迫的社会问题,人们对MFC进行了大量且持续的研究,主要集中在大规模系统的开发和运行上。[12,15] 扩大MFC的规模对于应对迫在眉睫的能源-气候危机至关重要。尽管过去几十年来MFC取得了长足的发展和性能提升,但其规模化和商业化仍然难以实现。[12–16] 最关键的挑战是其性能极低,且性能不会随着尺寸的增大而成比例提高。[16–19] 许多研究已经探索了通过纳米技术、细菌基因工程和材料创新来提高MFC性能的方法。[13,20,21] 然而,它们能否经济高效且稳健地集成到大规模应用中还值得怀疑。尽管模块化堆叠
简介 生物电池(也称为“生物电池”)通过利用有机化合物(例如酶或细菌)来产生电能(Choi,2023 年)。这些电池代表了可持续能源生产的潜在成果丰硕的研究领域,因为它们有可能从可再生资源中产生电力,并且不会对周围的生态系统产生负面影响。微生物燃料电池(也称为 MFC)和酶生物燃料电池是生物电池(EBFC)的两种主要类别(Calabrese Barton 等人,2004 年)。在 MFC 中,细菌消化有机物并产生电子作为副产品;然后可以收集、储存这些电子并将其用作电能来源。在电子供体燃料电池(EBFC)中,酶在燃料(例如葡萄糖)的氧化中起催化作用,从而导致