对退休和替换Fos-Sil燃油链中所有现有设备的热情洋溢的请求 - 从勘探和生产到利用 - Saul Griffith的Electialify:一本我们清洁能源未来的乐观主义者(2021)(Electrify)的剧本与Steven E. Koonin的未解决(2021)相反。两位学者代表了关于社会是否必须迅速降低其对碳氢化合物的依赖,以满足其能源需求和构图中的依赖性,并在大气中存在温室气体(GHG)。Griffith 1 - 与Koonin不同 - 毫不犹豫地开处方混凝土解决方案;他的书到处都是他们。的确,作者将Electify描述为“为未来而战的行动计划”,也是清洁能源的技术路线图。2在他的开场salvo中(“序言”,pp。xi - xiii),他援引战争准备的语言,以强调他推荐的规模和紧迫性:“美国不仅需要协调一致的技术,工业,劳动,监管改革,以及批判性的融资。” 3为了实现转型,格里菲斯宣称:“我们需要在美国交付的电力数量4,需要的是一个月球射击工程项目,以提供带有新规则的新能量网格 - 一个更像互联网的电网。” 5然而,格里菲斯认为,与他的字幕 - “专家的剧本”一致 - 如果采用了他的补救措施,从长远来看,能量将更便宜,更丰富,并建议“获得技术,融资和法规正确的后果是,美国每个家庭每年都可以节省数千美元。” 6他还设想了雪崩,以帮助该国摆脱“大流行和经济危机”的反弹,理由是同事认为“多达2500万好
1。J。Ren,Y。Huang,H。Zhu,B。Zhang,H。Zhu,S。Shen,S。Shen,G。Tan,F。Wu,H。He,H。He,S。Lan,S。Lan,X。Xia和Q. Liu,“用于能源存储的MOF碳材料的最新进展”,《碳含量》,碳能量,2 [2] 176-202(20202020)。2。S.-W。 Choi,“在室温下运行的半导体基于碳纳米材料的气体传感器的传感性能”,《陶瓷》,22 [1] 96-106(2019)。3。J。kim,“高热电导率纳米材料的测量技术(韩语)”,《陶瓷》,24 [1] 109-119(2021)。4。R。Taylor和D. R. M. Walton,“富勒烯的化学”,《自然》,363 [24] 685-693(1993)。5。S.-H。 Lee,J。H. Park和S. Min。Kim,“碳纳米管纤维的合成,特性和应用”,J。Kor。 Ceram。,Soc。,58 148-159(2021)。 6。 R。 您,Y.-Q. 刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981Kim,“碳纳米管纤维的合成,特性和应用”,J。Kor。Ceram。,Soc。,58 148-159(2021)。6。R。您,Y.-Q. 刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981您,Y.-Q.刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z.您,“基于石墨烯的柔性电子产品的激光制造”,Adv。mater。,32 [15] 1901981
纳米复合材料作为Na-ion电池的新型阴极” Nano Energy,77 105175(2020)。4。R。A. Shakoor,D。H。Seo,H。Kim,Y。U。 Park,J。Kim,S。W. Kim,H。Gwon,S。Lee和K. mater。 化学。 ,22(38):20535-20541(2012)。 5。 J。 Kim,H。Kim和S. Lee,“高功率阴极材料NA 4 VO(PO 4)2,带有用于NA离子电池的开放框架”。 mater。 ,29(8):3363-3366(2017)。 6。 J。 Kim,I。 Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。A. Shakoor,D。H。Seo,H。Kim,Y。U。Park,J。Kim,S。W. Kim,H。Gwon,S。Lee和K.mater。化学。,22(38):20535-20541(2012)。5。J。Kim,H。Kim和S. Lee,“高功率阴极材料NA 4 VO(PO 4)2,带有用于NA离子电池的开放框架”。mater。,29(8):3363-3366(2017)。6。J。Kim,I。 Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Kim,I。Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Park,H。Kim,K.-Y.Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Park,Y.-U。Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。能量母校。,6(6):1502147(2016)。7。J。H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。能量母校。,9(22):1900603(2019)。8。M。K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。9。W。Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。mater。化学。A,6(35):17095-17100(2018)。10。Y。liu,Z。Tai,Q。Zhang,H。Wang,W。K。Pang,H。K。Liu,K。Konstantinov和Z. Guo,“新的储能系统:可充电钾 - 固体电池电池” Nano Energy,Nano Energy,35 36-43(2017)。11。 n。Yabuuchi,M。Kajiyama,J。Iwatate,H。Nishikawa,S。Hitomi,R。Okuyama,R。Usui,Y。Yamada和S. Komaba,“ P2-Type Na X [Fe 1/2 Mn 1/2 Mn 1/2] O 2从地球上的Eroce-Babiflack Electement for Na na na na na na nata na nata nate nath nat nat natat。 mater。 ,11(6):512-517(2012)。 12。 C。 Zhao,Q。Wang,Z。Yao,J。Wang,B。Sánchez-Lengeling,F。Ding,X。 Hu,“用于钠离子电池的氧化氧化物材料的合理设计”,《科学》,370(6517):708-711(2020)。 13。 C。 Zhao,M。Avdeev,L。Chen和Y. S. Hu,“含钠含量低的O3型氧化物,为Yabuuchi,M。Kajiyama,J。Iwatate,H。Nishikawa,S。Hitomi,R。Okuyama,R。Usui,Y。Yamada和S. Komaba,“ P2-Type Na X [Fe 1/2 Mn 1/2 Mn 1/2] O 2从地球上的Eroce-Babiflack Electement for Na na na na na na nata na nata nate nath nat nat natat。mater。,11(6):512-517(2012)。12。C。Zhao,Q。Wang,Z。Yao,J。Wang,B。Sánchez-Lengeling,F。Ding,X。 Hu,“用于钠离子电池的氧化氧化物材料的合理设计”,《科学》,370(6517):708-711(2020)。13。C。Zhao,M。Avdeev,L。Chen和Y. S. Hu,“含钠含量低的O3型氧化物,为
化学部门:精选参考文献 6121 光谱学和动力学 Dunkelberger, AD; Ratchford, DC; Grafton, AB; Breslin, VM; Ryland, ES; Katzer, DS; Fears, KP; Weiblen, RJ; Vurgaftman, I.; Giles, AJet al. 超快主动调节 Berreman 模式。ACS Photonics 2020, 7 (1), 279;https://doi.org/10.1021/acsphotonics.9b01578 Dunkelberger, AD; Ellis, CT; Ratchford, DC; Giles, AJ; Kim, M.; Kim, CS; Spann, BT; Vurgaftman, I.; Tischler, JG; Long, JPet al. 通过载流子光注入主动调节表面声子极化子共振。 Nature Photonics 2018, 12 (1), 50; https://doi.org/10.1038/s41566-017-0069-0 Grafton, AB; Dunkelberger, AD; Simpkins, BS; Triana, JF; Hernández, FJ; Herrera, F.; Owrutsky, JC 硝普钠中的激发态振动-极化子跃迁和动力学。Nature Communications 2021, 12 (1), 214.;https://doi.org/10.1038/s41467-020-20535-z Klug, CA; Miller, JB 自动检测宽 NMR 谱:顺磁性 UF4 的 19F NMR 和负载型 Pt 催化剂的 195Pt NMR。固态核磁共振 2018,92,14-18;https://doi.org/10.1016/j.ssnmr.2018.03.006 Maza, WA;Pomeroy, ED;Steinhurst, DA;Walker, RA;Owrutsky, JC 固体氧化物燃料电池合成气运行中硫污染的光学研究。电源杂志 2021,510,230398;https://doi.org/10.1016/j.jpowsour.2021.230398 6123 材料合成与加工 Chaloux, BL;Yonke, BL;Purdy, AP;Yesinowski, JP;Glaser, ER;Epshteyn, A.; P(CN)3 碳磷氮化物前体扩展固体材料化学,2015, 27 (13), 4507–4510;https://doi.org/10.1021/acs.chemmater.5b01561 Epshteyn, A.; Garsany, Y.; More, KL; Jain, V.; Meyer III, HM; Purdy, AP; Swider-Lyons, KE;通过将催化剂纳米粒子粘附固定在石墨碳载体上来提高电催化剂耐久性的有效策略,ACS Catalysis 2015, 5 (6), 3662–3674; https://doi.org/10.1021/cs501791z Maza, WA、Breslin, VM、Owrutsky, JC、Pate, BB、Epshteyn, A、水合电子的纳秒瞬态吸收和线性全氟烷基酸和磺酸盐的还原,环境科学技术快报,2021,8,7,525-530;https://doi.org/10.1021/acs.estlett.1c00383 MT Finn、BL Chaloux 和 A. Epshteyn,探索反应条件对声化学生成的 Ti-Al-B 燃料粉末形态和稳定性的影响,能源与燃料,2020,34,11373-11380; https://doi.org/10.1021/acs.energyfuels.0c01050 MD Ward、BL Chaloux、MD Johannes 和 A. Epshteyn,《硼硫酸铵中的便捷质子传输——一种适用于中温的未加湿固体酸聚电解质》,《先进材料》,2020 年,2003667;https://doi.org/10.1002/adma.202003667 6124 材料应用概念 Thum, MD;Casalini, R.;Ratchford, D.;Kołacz, J.;Lundin, JG,通过表面诱导无序实现的液晶芯纳米纤维的光致变色相行为。J. Mat. Chem. C,2021,9,12859-12867;https://doi.org/10.1039/D1TC02392F Giles, SL;Sousa-Castillo, A.;Santiago, EY;Purdy, AP;Correa-Duarte, MA;Govorov, AO;Baturina, OA 使用 SiO2-TiO2 复合颗粒和空气进行有害硫化物 2-氯乙基乙基硫化物的可见光驱动氧化。胶体界面科学通讯,2021,41,100362;https://doi.org/10.1016/j.colcom.2021.100362
可用于探测材料表面的元素,电子和化学特性。11–14虽然通过峰值解构对XPS数据的解释很普遍,但对技术的基本理解和对正确数据处理的欣赏通常却经常丢失。15最近,在XPS领域的领先从业人员之间的社区努力中准备了一系列宝贵的指南,目的是使XPS的新研究人员能够计划实验并将其数据理解到高水平。本系列发表在“ X射线光电子光谱的实用指南”中,例如“用于X射线光电子光谱的实用指南:规划,进行和报告XPS测量的第一步” 16和“实用曲线拟合X射线光电机光谱曲线光谱”的实用指南。17此外,还有许多先进的技术,许多材料科学家都不熟悉。此外,XPS制造商的当前重点是使用表面探针的组装对单个分析点进行的高吞吐量检查,甚至是非表面特定技术(例如拉曼光谱)。由于此类系统的可用性变得更加广泛,因此需要对多技术表面分析的能力,优势和弱点进行广泛了解。本综述旨在强调使用基于实验室的XP和相关表面技术的材料分析这种组合方法的好处。在基于实验室的系统(离子散射,紫外光电器,螺旋螺旋发射和电子能量损失光谱)上最常规发现的那些实验探针的应用,尽管许多其他补充
作为佛罗里达大学的学生,您承诺遵守荣誉准则,其中包括以下誓言:“我们,佛罗里达大学社区的成员,承诺要求自己和我们的同学遵守最高的诚实和正直标准。” 您需要表现出与对佛罗里达大学学术界的承诺相符的行为,以及在佛罗里达大学提交的所有学分作业中的行为。以下誓言是必需的或暗示的:“以我的荣誉,我既没有给予也没有接受未经授权的帮助来完成这项作业。”除非教师明确允许您合作完成课程任务(例如作业、论文、测验、考试),否则假定您将独立完成每门课程的所有工作。此外,作为您遵守荣誉准则的义务的一部分,您应向相关人员报告任何助长学术不端行为的情况。您有责任了解并遵守有关学术诚信和学生荣誉准则的所有大学政策和程序。佛罗里达大学绝不容忍违反荣誉准则的行为。违规行为将被报告给学生办公室主任,以考虑采取纪律处分。有关学生荣誉准则的更多信息,请参阅:http://www.dso.ufl.edu/SCCR/honorcodes/honorcode.php。”
摘要:聊天机器人用作与人交流的代理。这可能是基于文本的,也可能是语音对话(在基于语音的查询的情况下)。聊天机器人主要用于信息获取。它可以在本地计算机和智能手机上运行,但大多数情况下是通过互联网获取的。该项目的主要目标是分析用户的问题并理解用户的消息,以非常有效的方式回答用户的问题,节省用户的时间,因为她/他不必亲自去学校进行查询。该系统将帮助学生了解学校活动。该系统将使用有效的 GUI 进行响应,这意味着就像一个真实的人在与用户交谈一样。PMISTBOT 是一个使用人工智能 (AI) 和自然语言处理 (NLP) 算法创建的智能框架。它具有引人注目的用户界面,有助于回答与评估单元、认证、学术、客户参与和平均绩点、安排单元和其他活动相关的问题。关键词:人工智能标记语言、聊天机器人、自然语言、自然语言处理、nltk。
我们提出Mistiqs,这是一种用于时间相关的量子模拟的乘法软件。mistiqS提供了端到端功能,用于模拟由多个量子计算平台跨时间依赖的海森伯格·汉密尔顿(Heisenberg Hamiltonians)模拟系统的量子多体动力学。它提供了高级编程功能,用于生成量子电路的中间表示,可以将其转化为各种行业标准表示。此外,它提供了电路汇编和优化方法的选择,并促进了当前基于云的量子计算后端的量子电路的执行。mistiqs是一个可访问且高度灵活的研究和教育平台,使更广泛的科学家和学生可以对当前量子计算机进行量子多体动力学模拟。©2021由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。