Spirent Vertex 高频转换器通过将 0.75GHz 至 6GHz 之间的 RF 范围转换为 5.9GHz 至 40.5GHz 之间的 mmWave 范围,反之亦然,使 Vertex 信道仿真器更接近 5G,从而实现 5G 应用所需的毫米波场景中的信道特性模拟。它还可以定制以支持其他 mmW 频率。Vertex HFC 可用于各种场景,例如在 mmWave 频段基站和 mmWave 频段设备之间注入 RF 信道仿真,或从 RF 频段网络仿真器或 eNodeB 上变频到 mmWave 频段设备。
本研究介绍了一种生产可打印的,由琼脂糖(Ag)和二氧化碳饱和壳壳壳(CS)水凝胶配制的可打印的生物学的方法。这项研究确定了中等分子量Chi Tosan是生物学生产的最佳选择,首选的壳聚糖水凝胶含量为40-60%。流变分析揭示了生物学的假塑性行为和27.0至31.5°C之间的SOL-GEL相变。C。基于MMW的基于MMW的生物INK也显示出最稳定的挤出特征。选择生物键的壳聚糖的选择还基于对聚合物的抗菌活性的评估,其分子量的函数和脱乙酰基的程度,指出大肠杆菌和链球菌的细胞还原率显着,分别为1.72和0.54,分别为1.72和0.54。通过MTT和LDH测试通过MTT和LDH测试评估的细胞毒性评估证实了L929,HACAT和46BR.1 N细胞系的生物学安全性。 此外,XTT增殖测定法证明了生物学对46br.1 N成纤维细胞增殖的刺激作用,与胎牛血清(FBS)观察到的成纤维细胞相当。 FTIR光谱证实了生物互入为物理聚合物混合物。 总而言之,CS/AG Bioink展示了在包括皮肤再生在内的组织工程应用中晚期空间细胞培养物的有希望的潜力。的细胞毒性评估证实了L929,HACAT和46BR.1 N细胞系的生物学安全性。此外,XTT增殖测定法证明了生物学对46br.1 N成纤维细胞增殖的刺激作用,与胎牛血清(FBS)观察到的成纤维细胞相当。FTIR光谱证实了生物互入为物理聚合物混合物。总而言之,CS/AG Bioink展示了在包括皮肤再生在内的组织工程应用中晚期空间细胞培养物的有希望的潜力。
∗ 我们感谢 Philippe Bontems、Daniel Buncic、Reto Foellmi、Gerhard Glomm、Michael Grei-necker、Olof Johansson-Stenman、Marko K¨othenb¨urger、Christoph Kuzmics、Marc Law、Nathalie Mathieu-Bolh、Xavier Raurich、Michael Scholz 和 Stephen Turnovsky 的有益讨论和建设性建议。本文的早期版本还受益于欧洲公共选择学会 (EPCS) 2018 年会议(意大利罗马)和公共经济理论 (PET) 2019 年年会(法国斯特拉斯堡)参与者的评论。Aronsson 和 Wendner 非常感谢玛丽安和马库斯·瓦伦堡基金会 (MMW 2015.0037) 的研究资助。我们对任何剩余错误负全部责任。
1. 集成电路设计:低功耗电子器件、集成电力电子器件、毫米波和太赫兹电子器件/MMIC、通信和传感用射频集成电路、神经形态硬件等。2. 基于电荷(纳米电子学)以及自旋(自旋电子学)的器件3. 纳米材料和纳米器件科学4. 微/纳电子应用新型材料的生长5. 能源(材料和器件):无机和有机半导体光伏电池、能量收集器等6. 计算纳米电子学7. 光子学、神经形态和量子技术的材料和器件8. 纳米机械传感器和系统、NEM 与微电子集成、RF-NEM 等9. 宽带隙和其他功率半导体器件
摘要:提出了一种由晶体振荡器和自由运行介质谐振器振荡器 (DRO) 驱动的锁相环 (PLL) 级联。为了最大限度地降低相位噪声、杂散音和抖动,使用较低 GHz 范围内的可编程 PLL1 来驱动具有固定倍频因子的毫米波 (mmW) PLL2。相位噪声分析得出两个 PLL 的两个最佳带宽,以使级联的输出抖动最低。通过分频 PLL1 的输出频率并通过由 DRO 驱动的单边带 (SSB) 混频器对其进行上变频,可以进一步降低 PLL1 中的相位噪声和杂散音 (杂散)。通过将 SSB 混频器纳入 PLL1 的反馈环路中,可以避免手动调整 DRO,并且可以采用低噪声自由运行 DRO。本文介绍了 SiGe BiCMOS 技术中的一种示例设计。
δ 通讯地址:Amit Etkin,amitetkin@stanford.edu。贡献:WW 参与了数据的分析和解释以及手稿的起草和修改。YZ 和 JJ 参与了数据的分析和手稿的起草。MVL 和 GAF 参与了手稿的起草和修改。CER、CC、CCF、NK、CAC、RW、RT、HMT、KM、TLC、KS、MKJ 和 JMT 参与了研究的实施、数据的分析和解释以及手稿的修改。TD、PA、PJM、MMW 和 MF 参与了研究的设计和实施。DAP、MA 和 MHT 参与了研究的设计和实施以及手稿的起草和修改。AE 参与了研究的设计和实施、数据的分析和解释以及手稿的起草和修改。*博士Etkin 和 Trivedi 作为资深作者做出了同等贡献
巴伦将单端信号转换为平衡信号,广泛用于射频前端模块,如倍频器、混频器等,它们利用差分信号来消除共模信号并改善端口隔离。巴伦的关键性能规格包括插入损耗、幅度/相位平衡和芯片尺寸。这些参数在毫米波 (MMW) 电路和系统的设计中非常重要 [1]。Marchand 巴伦 [2-10] 利用两个耦合线段,由于其工作带宽宽且易于实现,在 MMW 频率电路设计中得到广泛应用。在 [2] 中,提出了一种基于改进的离中心频率法的非对称宽边耦合 Marchand 巴伦。它实现了 34-110 GHz 的带宽;然而,它的插入损耗很高,平均约为 3 dB。为解决不平衡性能问题,还设计了另一种带有偏置半径线圈的30 GHz至60 GHz变压器巴伦[11]。结果显示,幅度不平衡为0.12 dB,相位不平衡小于1 ◦;但最大插入损耗约为3 dB。一种小型化片上Marchand巴伦[12]基于堆叠螺旋耦合(SSC)结构,带有自耦合补偿线和带深沟槽的中心抽头接地屏蔽,设计用于6.5 GHz至28.5 GHz的宽带工作,但测得的最大插入损耗为3 dB。宽带工作和幅度/相位不平衡一直是先前报道的文献的重点,同时以巴伦插入损耗为代价。在本文中,介绍了一种具有低插入损耗的新型Ka波段Marchand巴伦的设计,同时实现了宽带工作和可接受的不平衡性能。所提出的巴伦采用边耦合和宽边耦合组合结构来增强主信号和次信号之间的耦合,从而在 29.0 GHz 至 46.0 GHz 的 1 dB 带宽内实现了 1.02 dB 的测量低插入损耗。第 2 节介绍了巴伦的详细分析和所提出的巴伦设计,第 3 节讨论了实验结果并与最新技术进行了比较,第 4 节得出结论。
首字母缩略词和缩写列表 ALU – 水生生物利用 BCG – 生物条件梯度 BMP – 最佳管理实践 BR – 巴克峡运行 CAST – 切萨皮克评估和情景工具 CBP – 切萨皮克湾计划 CCCD – 克林顿县保护区 CHP – 冷水遗产伙伴关系 CR – 露营地道路 DCNR – 自然资源保护部 E&S – 侵蚀和淤积 EPA – 美国环境保护署 EPT – 蜉蝣目、葎翅目、毛翅目 FC – 钓鱼溪 GIS – 地理信息系统 GPM – 加仑/分钟 HUC – 水文单位代码 HQ-CWF – 高质量冷水渔业 IBI – 生物完整性指数 LHU – 洛克黑文大学 MC – 米尔溪 MMW – 我的流域模型 NADP – 国家大气沉降计划 NFWF – 国家鱼类和野生动物基金会 NHD – 国家水文数据集 NPDES – 国家污染物排放消除系统 NRCS – 自然资源保护局 PA – 宾夕法尼亚州 PA DEP – 宾夕法尼亚州环境保护部 PFBC – 宾夕法尼亚州鱼类和船舶委员会 PAGC – 宾夕法尼亚州野生动物保护委员会 RSS – Ruhl-Seven Spring SVWA – Sugar Valley 流域协会 TMDL – 日最大总负荷 TS – Tylersville Spring TU – Trout Unlimited USGS – 美国地质调查局 WIP – 流域实施计划 WS -Wolf Spring ZS – Zeller Spring
在保证速度性能和低功耗要求的超短通道 CMOS 节点中,TDDB 仍然是一个关键的可靠性问题。在交流射频信号操作期间,“关断状态”与“导通状态”模式依次发生,从低频(kHz)到极高频范围(GHz)[1-2]。即使“关断状态”应力通常以比“导通状态”应力更小的速率降低器件性能,但它可能成为器件在射频域和毫米波应用中运行的限制因素,在毫米波应用中,电源电压 V DD 通常是逻辑应用中使用的电源电压的两倍。不仅器件参数漂移可能变得显著,而且还可能触发栅极-漏极区域的硬击穿(BD)。因此,准确评估关断状态 TDDB 的可靠性并深入了解器件级的磨损机制至关重要,因为可以在 28nm FDSOI CMOS 节点的漏极(图 1a、c)和栅极(图 1b、d)电流上观察到击穿事件。由于空穴和电子的碰撞电离 (II) 阈值能量和能垒高度不同,因此导通或关断状态下热载流子 (HC) 的产生及其 V GS / V DS 依赖性在 N 沟道和 P 沟道中明显不同[3] 。通过低栅极电压下的 HC 敏感性对 P 沟道和 N 沟道进行了比较[4],重点关注注入载流子效率,一方面主要考虑导通状态下的热载流子退化 (HCD) 下的 P 沟道侧,另一方面考虑关断状态下的 N 沟道侧,因为热空穴注入引起的损伤和 BD 敏感性更大。这意味着高能 HC 可能在关断模式下在栅极-漏极区域触发 BD 事件[5-6],与热空穴效率有关[7] 。
TDDB仍然是超短路通道CMOS节点中的关键可靠性问题,并保证了速度性能和低消耗要求。在AC RF信号操作“外状态”过程中,从低(kHz)到非常高的频率范围(GHz)[1-2]依次以“状态”模式出现。即使“偏离状态”应力通常以比“州内”应力较小的速率降低设备,它也可能成为RF域中设备操作的限制因素,而对于逻辑应用中使用的供应电压V DD通常翻了一番。不仅设备参数漂移可能会变得很重要,而且还可以触发严重分解(BD)到Gate-Drain区域中。因此,至关重要的是要精确评估态度TDDB的可靠性,并深入了解设备级别的磨损机制,因为可以在排水管上观察到故障事件(图。1a,c)和门(图。1b,d)28nM FDSOI CMOS节点中的电流。由于影响电离的差异(ii)孔和电子的阈值能量和能屏障高度,在州或偏离状态下的热载体(HC)生成及其V GS / V DS依赖性在N通道和P通道上明显不同[3]。通过低闸门敏感性进行了的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。这种暗示的高能量HC可能会在栅极排水区域的OFF模式下触发BD事件[5-6]与热孔效率相关[7]。