(1) 器件在暴露于任何指定的辐射环境时都不会闩锁。 (2) 使用 CREME96 计算,应用了威布尔参数和其他相关属性。 辐射特性 总电离剂量辐射 MRAM 辐射硬度保证 TID 水平通过 60 Co 测试(包括过量和加速退火)认证,符合 MIL-STD-883 方法 1019 标准。制造过程中的晶圆级 X 射线测试提供持续保证。 单粒子软错误率 MRAM 中包含特殊工艺、存储器单元、电路和布局设计考虑因素,以最大限度地减少重离子和质子辐射的影响并实现较小的预计 SER。可根据要求提供威布尔参数和其他相关属性,以计算其他轨道和环境的预计翻转率性能。 瞬态剂量率电离辐射 产品设计的许多方面都经过了处理,以处理与瞬态剂量率事件相关的高能级。这使得 MRAM 能够在暴露于瞬态剂量率期间和之后写入、读取和保留存储的数据
设计先进的单位形状各向异性 MRAM 单元需要准确评估具有细长自由层和参考层的磁隧道结 (MTJ) 中的自旋电流和扭矩。为此,我们通过在隧道屏障界面处引入适当的自旋电流边界条件,并采用局部依赖于电荷电流磁化矢量之间角度的电导率,将成功用于纳米级金属自旋阀的分析方法扩展到 MTJ。从而准确地再现了作用于自由层的扭矩的实验测量电压和角度依赖性。超大规模 MRAM 单元的开关行为与最近对形状各向异性 MTJ 的实验一致。使用我们的扩展方法对于准确捕捉 Slonczewski 和 Zhang-Li 扭矩贡献对包含多个 MgO 屏障的复合自由层中的纹理磁化作用的相互作用绝对必不可少。
摘要 磁性随机存取存储器 (MRAM) 现在可作为嵌入式存储器从主要的 CMOS 代工厂获得。在这项研究中,我们证明了与传统 STT-MRAM 中使用的磁性隧道结相比,略微改进的磁性隧道结可用于多种用途,即磁场传感和射频振荡器。为此,垂直各向异性磁性堆栈中的 FeCoB 存储层厚度调整为 1.3-1.4 纳米,更接近从垂直到平面内各向异性的过渡区域。可以使用两种使用相同堆栈的磁场传感配置,在小场范围内实现高灵敏度或在大场范围内实现较低的灵敏度。此外,还展示了射频振荡器 GHz 检测和生成。可以设想这种多功能堆栈的进一步应用,包括非易失性和可重新编程逻辑、特殊功能(如随机数生成器和忆阻器)。
• 自旋是一个基本量子数 • 铁磁材料包含不成对的电子 • 自旋的排列产生磁性 • 记忆存储在电子自旋中 • 自旋不会像电荷那样“泄漏” • 自旋不受重离子辐照的影响 • 自旋不受累积剂量 (TID) 的影响 • 自旋排列由磁场实现 • 避免基于电荷的设备的磨损机制
我们采用随机Landau – lifschitz – Gilbert(SLLG)方程来探索对自旋转移扭矩磁磁磁性随机访问记忆(STT-MRAM)中切换的热效应。开关时间的分布取决于有限元方法(FEM)实现中用于离散化的网格,我们在热场计算中引入了有效的温度缩放,以减少对元素大小的切换时间分布依赖性。此外,我们在不同温度下研究了STT-MRAM的开关统计数据,并表明切换时间分布的平均值较低,但在较高的工作温度下,切换时间较长。结果,在升高温度下,具有固定电压脉冲持续时间的STT-MRAM切换变得更容易出错。
我们提出了一种灵活,有效的方法,可以通过在三维框架中耦合电荷,自旋和磁化动力学来建模现代SOT-MRAM细胞中的磁化动力学。我们扩展了现有文献,以获得为Rashba-Edelstein效应建模的旋转电流边界条件。我们计算起源于自旋大厅和Rashba-Edelstein效应的自旋 - 轨道扭矩,并表明我们的模型可以重现IR/COFEB双层结构中自旋扭矩的厚度依赖性的实验结果。此外,我们通过模拟无野外SOT-MRAM细胞中的磁化逆转来验证我们的方法,并表明,随着界面dzyaloshinskii – Moriya相互作用,我们获得了与先前报道的实验结果相似的域壁运动。
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。