1美国大诺伊达萨尔达大学化学与生物化学系201306,印度2 2013年,昌迪加尔大学机械工程系,加里安,莫哈利,莫哈利,旁遮普邦,印度旁遮普省3号研究中心3研究中心,奇卡拉大学工程与技术研究所,拉杰布拉,拉杰布拉,旁遮普邦140401,印度40401,印度40401,政府卫生学院。医院SAVEETHA医学和技术科学研究所(SIMATS)CHENNAI-602105,印度泰米尔纳德邦6号泰米尔纳德邦6印度海得拉巴航空工程学院机械工程系7 201306,印度2013年,昌迪加尔大学机械工程系,加里安,莫哈利,莫哈利,旁遮普邦,印度旁遮普省3号研究中心3研究中心,奇卡拉大学工程与技术研究所,拉杰布拉,拉杰布拉,旁遮普邦140401,印度40401,印度40401,政府卫生学院。医院SAVEETHA医学和技术科学研究所(SIMATS)CHENNAI-602105,印度泰米尔纳德邦6号泰米尔纳德邦6印度海得拉巴航空工程学院机械工程系7 201306,印度2013年,昌迪加尔大学机械工程系,加里安,莫哈利,莫哈利,旁遮普邦,印度旁遮普省3号研究中心3研究中心,奇卡拉大学工程与技术研究所,拉杰布拉,拉杰布拉,旁遮普邦140401,印度40401,印度40401,政府卫生学院。医院SAVEETHA医学和技术科学研究所(SIMATS)CHENNAI-602105,印度泰米尔纳德邦6号泰米尔纳德邦6印度海得拉巴航空工程学院机械工程系7 201306,印度2013年,昌迪加尔大学机械工程系,加里安,莫哈利,莫哈利,旁遮普邦,印度旁遮普省3号研究中心3研究中心,奇卡拉大学工程与技术研究所,拉杰布拉,拉杰布拉,旁遮普邦140401,印度40401,印度40401,政府卫生学院。医院SAVEETHA医学和技术科学研究所(SIMATS)CHENNAI-602105,印度泰米尔纳德邦6号泰米尔纳德邦6印度海得拉巴航空工程学院机械工程系7201306,印度
自 2004 年以来,随着二维 (2D) 材料的迅猛发展,这些纳米材料在许多应用领域引起了广泛关注,包括储能、[1] 催化、[8] 柔性电子 [9] 和摩擦纳米发电机。[12] MXenes 于 2011 年被发现,是几原子厚的层状二维过渡金属碳化物、氮化物和碳氮化物。[13] MXene 单片的化学式为 M n +1 X n T x (n = 1 至 4),它描述了交替的过渡金属层(M:元素周期表的第 3 – 6 族)与具有键合终端的碳/氮(X)层(T x:-O 2 、-F 2 、-(OH) 2 、-Cl 2 或它们的组合)交错在外部过渡金属表面上。 [6, 14, 15] MXenes 的晶体结构和化学式来源于其 3D
制定绿色和有效的制备策略是2D过渡金属氮化物和/或碳化物(MXENES)领域的持续追求。传统的蚀刻方法,例如基于HF的或高温的Lewis-Acid-Molten-Molten-Salt蚀刻途径,需要更严格的蚀刻条件,并且表现出较低的制备效率,具有有限的可扩展性,严重限制了其商业生产和实际应用。在这里,通过使用NH 4 HF 2作为Etchant,提出了一种超快低温熔融盐(LTMS)蚀刻方法,用于大规模合成不同的MXENES。增加的热运动和改善的熔融NH 4 HF 2分子显着加快了最大相的蚀刻过程,从而在短短5分钟内实现了Ti 3 C 2 T X Mxene的准备。LTMS方法的普遍性使其成为快速合成各种MXENE的宝贵方法,包括V 4 C 3 T X,NB 4 C 3 T X,MO 2 TIC 2 T X X和MO 2 CT X。LTMS方法易于扩展,并且可以在单个反应中产生超过100 g Ti 3 c 2 t x。获得的LTMS-MXENE在超级电容器中表现出出色的电化学性能,显然证明了LTMS方法的效果。这项工作为大规模商业生产提供了一种超快,通用和可扩展的LTM蚀刻方法。
十多年前,德雷塞尔大学发现了二维 (2D) Ti 3 C 2,从此创建了一个新的 2D 过渡金属碳化物、氮化物和碳氮化物家族 [1]。由于采用自上而下的选择性蚀刻从三元碳化物 (Ti 3 AlC 2 ) 合成 Ti 3 C 2 ,而三元碳化物属于 MAX 相大家族 [2],因此自发现第一个 MXene 以来,很明显有更多的 2D 组合物是可能的。不久之后,又报道了具有不同过渡金属和固溶体的更多 MXene [3],从而确立了 MXene 作为一类 2D 材料的地位,化学式为 M n+1 X n T x。迄今为止,M 代表第 3 至 6 族过渡金属,X 为碳或氮,T 代表表面终端,包括元素周期表第 16 和 17 族以及羟基和酰亚胺基(图 1)。随着最近发现碳化物 MXenes 中的氧取代 [ 4 ] 和氧化物碳化物的形成,X 也可以包括氧(至少在固溶体 MXenes 中)。MXenes 可以具有不同数量的 MXM 层,用 n 表示,范围从 1 到 4,T x 中的 x ≤ 2 [5]。自 2019 年我们的 ACS Nano 社论 [ 6 ] 以来,MXenes 的格局从组成和应用的角度发生了变化。MXene 成分的范围在 MXene 公式的所有四个组分中都有所扩展,即 M、X、T 和 M n +1 X n T x 中的 n。对于M,M的全范围固溶体,例如(Ti,V) 2 CT x 、(Ti,Nb) 2 CT x 、(V,Nb) 2 CT x ,允许
摘要 电池和超级电容器已成为下一代储能技术的有希望的候选者。新型二维 (2D) 电极材料的快速发展预示着储能设备新时代的到来。MXenes 是一种新型的层状二维过渡金属碳化物、氮化物或碳氮化物,由于其优异的电导率、电化学和亲水性能、大的表面积和吸引人的拓扑结构而备受关注。本综述重点介绍了使用和不使用蚀刻剂(如氢氟酸、氟化锂和盐酸)去除 MAX 相的“A”层来制备碳化钒 MXenes 的各种合成方法。目标是展示利用毒性较小的蚀刻方法来实现与传统方法制备的 MXenes 具有可比性能的 MXenes。本综述还讨论了插层对 MXene 层之间高层间距的影响以及 MXenes 作为超级电容器和电池电极的性能。最后,讨论了目前对碳化钒 MXenes 在合成、可扩展性和在更多储能设备中的应用方面的知识存在的差距。
二维过渡金属(TM)碳化物和碳氮化物(称为MXenes)自2011年首次亮相以来,由于其二维层状结构和优异的物理化学性质,在各个应用领域引起了极大关注。[1] MXenes 可以从相应的层状 MAX 相中衍生出来,其结构公式为 M n + 1 AX n(n = 1–3)。[2] MAX 相化合物由过渡金属(M)层与 C 或 N 层(X)交错组成,强的 M X 键进一步通过 III A 或 IV A 族元素(A)的单原子层插入,呈现原子层和六方晶体结构。[3,4] 通常,可以通过优先溶解和提取 MAX 相结构中弱键合的 A 层来获得 MXenes。 [5,6] 在水相中蚀刻和剥离过程中,高反应性的TM表面立即与F、OH和=O等物质连接,得到MXene通式:M n + 1 X n T x (T x 代表表面物质)。[7–9] 基于丰富的表面终端、独特的混合共价键和金属键的层状结构,MXenes表现出有趣的功能性能,如优异的电化学和光学性能、优异的热导率、高电导率和突出的机械特性。[10–13] MXenes的这些性质可以通过改变微观结构、元素组成和表面终端来进一步调节,[14–19] 例如,通过改变M或X元素、合金化M或X层,[20–24] 以及通过使用多元素(M)面外或面内顺序在MXene结构中构造特殊空位。 [23,25–29] 因此,多功能且具有潜在可扩展性的合成技术使 MXene 材料在性能可调的二维材料领域中占据了独特的地位。[30]
本综述赞扬了电子显微镜方法的广度和深度,以及这些方法如何推动了对 MXenes 的大规模研究。MXenes 是二维材料中一个强大的新成员,源自其母体纳米层状材料家族,即 MAX 相。由于其丰富的化学性质,MXenes 表现出了彻底改变一系列应用的特性,包括储能、电磁干扰屏蔽、水过滤、传感器和催化。与电子显微镜相比,很少有其他方法在 MXene 研究和相应应用的开发中更为重要,电子显微镜可以在原子尺度上进行结构和化学识别。下面,将介绍已应用于 MXene 和 MAX 相前体研究的电子显微镜方法以及研究示例,并讨论其优点和挑战。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 的开放获取文章。
摘要近年来,由于其独特的特性,例如出色的安全性,明显的层间间距,环境灵活性,较大的表面积,高电导率和出色的热稳定性,二维MXENES已成为可充电电池的潜在电极材料。这篇综述研究了MXENES及其复合材料(混合结构)领域的所有最新进展,这些进展对于高级可充电电池的电化学应用很有用。本次评论的主要重点是金属离子电池和锂 - 硫磺(Li – S)电池。旨在表明,合成和表征的最新改进,对层间距离的更大控制以及新的Mxene复合材料的结合在一起,共同充当了储能应用的新兴和潜在方法。
作为碳捕获和利用方面的一致努力的一部分,电化学二氧化碳还原反应(CO 2 RR)是实现圆形碳经济的有前途的方法。二维金属碳化物和氮化物(MXENES)由于其可调的电子和表面性能而被吹捧为CO 2 RR的一种有吸引力的材料,这为破坏了传统过渡金属催化剂的中间结合能的线性缩放关系提供了可能的途径。尽管有大量的理论研究对MXENES作为CO 2 RR电催化剂的乐观前景,但仍有无数的未解决的问题以及未开发的设计机会,需要进一步的实验性优化才能实现MXENES的承诺潜力。在此,我们讨论了MXENES如何打破上述比例关系,以及MXENES修饰的方法可以改善其催化性能,包括缺陷工程和MXENES异质结构。最后,我们通过总结了当前的挑战和可能带来的策略,以实现MXENES的潜力。