二维 (2D) 材料的表面工程已被证明是一种改善其功能特性的有效技术。通过设计 MXene 化合物 M 2 C 系列中的 Janus 化合物 MM ′ C(其中两个表面由两种不同的过渡金属 M 和 M ′ 构成),我们探索了它们作为酸性电解质超级电容器电极的潜力。利用密度泛函理论 (DFT) 1 结合经典溶剂化模型,我们深入分析了三种被氧钝化的 Janus MXenes - NbVC、MnVC 和 CrMnC 的电化学参数。还与相应的终点 MXenes Nb 2 C、V 2 C、Mn 2 C 和 Cr 2 C 进行了比较。我们发现由于 Janus 的形成,表面氧化还原活性增强,从而显著提高了 MXene 电极的电荷存储容量。我们的分析表明,功能性改进的根源在于 Janus 化合物中一种成分的电荷状态变化,而这种变化又源于表面处理导致的电子结构变化。我们的研究是首次针对超级电容器应用的 Janus MXenes 电化学特性进行研究,表明通过形成适当的 Janus 化合物进行表面工程是一种在基于 MXene 电极酸性电解质的储能设备中提取高功率密度的可能途径。
•钻石,碳纳米管,氮,Mxenes,石墨烯等的合成和掺杂。•碳材料的物理和化学修饰•电力电子,光电和传感器的钻石设备•基于碳和氮化硼的量子技术•基于钻石的能量收集(催化,…)和储存(超级盖,…)•缺陷工程和色彩中心•碳纳米型和颗粒•碳材料的理论和计算建模•基于碳的异质结构,具有新颖的氧化物,碳化物,碳化物和氮化物材料•碳材料的低温物理•碳材料•碳材料和/或在高磁场下使用新型碳材料•使用新型碳材料的碳材料•传感器等新型设备概念,等等。•基于碳纳米材料的复合材料•(BIO)医疗应用,药物输送和纳米碳安全
近年来,通过缩减包括芯片互连的各种设备组件来缩放各种设备组件,已经满足了对集成电路较高性能的增长需求。然而,随着在微型互连中使用常规金属(例如铜)变得越来越具有挑战性,因此对具有高电导率和分解电流密度的替代互连材料的兴趣越来越大。在这里,我们证明了单层Ti 3 C 2 t X的分解电流密度非常高,这是一种二维过渡金属碳化物(称为MXENES)的材料,它超过了铜和其他常规金属的这种特性。在Ti 3 C 2 t X中发现的高电导率和分解电流密度的显着组合扩展了MXENES对微电子的潜在应用的令人印象深刻的列表,并保证对大型MXENE家族的其他材料进行研究,其中一些可能具有更好的特征。
二维(2D)材料长期以来一直是材料科学的焦点,这是由于其高度可调的化学结构,均匀的孔径分布和内在的传输途径。在过去的二十年中,突破性的2D材料的出现,包括石墨烯,过渡金属二分法(TMDC),分层双氢氧化物(LDHS),金属氮化物/碳化物(MXENES),金属 - 有机框架(MOFS)和远处的有机框架(MXENES),以及赖以生成的框架(MOFS),以及赖因构架(COFS),并列出了赖因(COFS),并将其延伸 - 本期特刊旨在探索和最大化2D材料在气体捕获和分离中的潜力,以理论和基于模拟的进步进行桥接实验演示。通过促进一种系统的方法来采用2D材料来进行高效,低能的膜工艺,我们希望为其工业实施和未来创新建立全面的基础。
摘要 MXenes 吸引了方法和技术领域的研究人员,他们将其应用于各种应用,例如储能设备、超级电容器 (SC) 和弹性电池。由于其出色的自动化、物理化学、光学、电气和电化学效应,原始 MXenes 及其纳米材料在多种类型的 SC 中的应用正在不断增加。由于其出色的电气性能、更好的机械强度、不同的实用簇和充足的层间空间,MXene 基纳米材料 (NM) 已展示出强大的储能能力。在这篇评论文章中,我们展示了 MXene 基纳米材料 (NM) 在超级电容器 (SC) 中的合成方法和应用的时间表和进展。最后,我们以该领域的未来展望结束了主题。
自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
2D材料令人兴奋,其中构图和原子布置在属性中起着决定性作用。发现新2D材料的潜在途径是从层压的3D相开始。常见的方法是将单个或几个原子层从具有强的化合物中剥落,具有强平面键和弱平面外键。剥落过程是通过机械力或离子交换和渗透肿胀促进的。[1,3,8]这包括均带有范德华或氢键之间的材料,例如石墨,MOS 2,H-BN和金属氧化物。尤其是,针对2D金属氧化物的注意力是由于其吸引人的功能而刺激的,并且富含结构和化学多样性以及电子特性。[9]它们的大量可能的氧化态对于实现较大的伪容量[8]的优势是与碳纤维和硫化物更高的化学稳定性相结合的,这对于增强电极的耐用性是可取的。[10]此外,氧化钛(TiO 2)纳米片具有适合光催化的特征,并允许逐层自组装。[11]仍然,新型合成途径是可取的,同时保持目标功能。除了机械剥落外,选择性蚀刻(也称为化学去角质)已被证明是从层压中层中层次较强的层压父3D晶体合成2D材料的替代途径。旗舰示例是2D MXENES,[5]由M n + 1 x n t z的通用公式描述,其中m是早期过渡金属,x为c和/或n,t z表示表面终止官能团,-o,-o,-oH,-f和cl。[12-14] MXENES通常是由A-Group元素的选择蚀刻来产生的,主要是来自父级最大相位,这是一大批原子层压板,迄今为止有150多个成员。[15]通过选择性蚀刻A层,实验研究已经确定了大约30种不同的MXENE,包括合金MXENES,显示出很高的计量物,用于从能量存储和催化到
聚合物13,15 - 17和二维材料(2D),例如MOS 2。18 - 21最近,人们对包括MXENES在内的2D材料的研究引起了很多兴趣,因为它们具有高表面积与体积比,依赖层可调的机械,电气,光学和物理化学性质,其量子构成以及低维度效果。22 - 24在这些2D材料中,由于其出色的机械性能,高载流子迁移率以及出色的电气和光学性能,因此广泛探索了基于石墨烯和过渡金属二甲化合物(TMDS)的气体传感器。尽管具有出色的传感器响应和响应时间,但基于石墨烯的2号传感器与长期恢复时间相关,而基于TMD的传感器由于其高吸附而导致的不完整恢复。25这种限制促使研究人员探索包括MXENES在内的其他2D材料。气体分子与传感材料的相互作用是任何气体感应过程的不可限制的特征。最近,由于MXENE的几个优势,基于MXENE的气体传感器受到了很多关注。此外,他们已经在电化学储能设备,良好的电器设备等中显示了应用程序的应用。
通常,Mxenes具有三个公式:m 2 x,m 3 x 2和m 4 x 3(m =早期过渡金属和x = c或n)。在m 2 x中,过渡金属原子形成蜂窝状晶格,另一个过渡金属原子在蜂窝晶格的中心发现。它显示了平面内化学排列,也称为i-Mxene。然而,M 3 x 2和m 4 x 3从平面化学排序(称为O-Mxene)中显示出,其中过渡金属原子位于周长层中,而其他原子占据了中心层。23 i-mxenes也可以通过将1/3的外国过渡金属或稀土元件m*替换为m 2 x中的m*,即(M 2/3 m* 1/3)2X。24 m*可能是磁性或非磁性(NM),具体取决于我们的选择。另一方面,O-Mxenes由公式M 2 m* x 2或m 2 m* 2 x 3表示。mxenes。 ,最大(m n +1 ax n)陶瓷,称为最大相。 使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。 在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。 最大阶段已知具有生长间结构,最大(m n +1 ax n)陶瓷,称为最大相。使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。最大阶段已知具有生长间结构