特拉维夫大学材料科学与工程系,拉马特阿维夫 6997801,以色列 摘要 先进的 2D 材料(如 MXenes)表现出卓越的电气、机械和热特性,使其成为集成电路架构中理想的替代品,而传统金属元件则受到持续小型化和功率限制的挑战。在这项工作中,我们介绍了一种可扩展的方法,通过结合光刻和旋涂技术来制作 10 纳米以下 MXene 薄膜图案。这种方法可确保形成均匀的微图案,而创新的、简单的 HCl 处理步骤可有效清除盐残留物,这是 MXene 合成中反复出现的问题。所得 MXene 薄膜厚度约为 6-7.5 纳米,光学透明,能够精确地进行微图案化,横向分辨率低至 2 µm。严格的分析表明,这些薄膜表现出卓越的导电性,并且 MXene-Si 结具有高光敏性。所提出的方法与现有的微电子制造装置无缝集成,标志着 MXene 在柔性、透明和可穿戴电子产品(从互连线和电极到高灵敏度光电探测器)中的应用取得了重大进展。
X射线检测器可以在非结构测试,辐射暴露监测,安全检查,包装分类,医学诊断和计算机断层扫描(CT)中找到各种应用。在工作原理方面,可以间接或直接检测到X射线辐射。间接地,闪烁体用于将高能量X射线光子转换为可见的荧光,然后通过Pho-Todiode将其转换为电信号。由于能量构造和闪烁体散射的局限性,因此产生高分辨率图像的过程具有挑战性。在X射线检测的直接方法中,半导体材料通常用于将高能X射线直接转换为电信号,从而提供更高的能量转换效率和更好的成像分辨率。最近,已经出现了直接的X射线检测,因此已经出现了高原子数(高Z)材料,例如金属卤化物钙钛矿(MHP),无铅钙钛矿和无机/有机材料。尽管这些材料可以有效地吸收高能量X射线光子,但这些具有低浓度缺陷的高质量单晶材料仍然具有挑战性。因此,由于激发载体的强烈重新支持,基于这些材料的X射线检测器具有相对较低的灵敏度。我们正在研究新材料和结构来解决这个问题。ti 3 C 2 t x mxenes由于其出色的电导率,机械性柔韧性和可调带镜头而特别有吸引力,此外还具有super层水性分散性。One promising option is MXenes, a type of 2D materials that consists of transition metal car- bides or nitrides with the general formula M n + 1 X n T x (where n ranges from 1 to 4, M is an early transition metal like Ti, Sc, or Cr, X can be carbon or nitrogen, and T x represents surface terminal groups such as F, O, OH, and Cl).1与单晶钙钛矿材料相比,Ti 3 C 2 t x mxenes纳米膜更容易通过真空过滤和转移而无需引入杂质而实用。与其他具有高电阻的材料不同,Ti 3 C 2 t X Mxenes的高电导率可以降低设备的总体电阻,从而使设备能够在相对较低的电压下实现X射线检测。与基于硅的底物的出色兼容性
发现石墨烯对2D材料引起了极大的兴趣,该材料呈现出具有高各向异性和可调节能带结构的超薄分层结构。有趣的是,它为开发2D材料家族的开发打开了大门,其中包括不同类别的2D材料。在其中,出现了过渡金属二甲化合物(TMD)和过渡金属碳化物MXENES(TMC)。tmds具有独特的分层结构,低成本,由地球丰富的元素组成,但是它们的电子电导率差,循环性较差,其在电化学测量过程中的结构和形态变化阻碍了其实际使用。最近,TMC MXENES在2D材料世界中引起了人们的关注,但是重新打包和聚合的问题限制了它们在大规模的能量转换和存储中的直接使用。为了应对这些挑战,基于导电TMCS MXENES和电化学活性TMD的杂种结构已成为有前途的解决方案。但是,了解异质结构材料中的固体/实心界面仍然是一个挑战。为了解决这个问题,高容量,低扩散屏障和良好的电子结构率的2D单个成分晶体非常寻求。过渡金属碳 - chalcogenides(TMCC)的出现提供了潜在的解决方案,因为这些2D纳米片由TM 2 x 2 C组成,其中TM代表过渡金属,X是S或SE和C原子。这种新的2D材料类是一种补救措施,避免了与异质结构中经常遇到的固体/实心接口相关的挑战。本综述着重于TMCC的最新发展,包括它们的合成策略,表面/接口工程以及电池,水分拆分和其他电催化过程中的潜在应用。还讨论了TMCC设计对电化学能量转换和存储的挑战和未来观点。
二维 (2D) 过渡金属碳化物(称为 MXenes)自 2011 年以来不断发展,部分原因是它们具有令人印象深刻的高电导率、刚性机械性能和丰富的化学活性表面基团。MXenes 的这些关键特性使它们成为均匀覆盖金属粉末以用于增材制造多功能金属复合材料的有吸引力的候选者。在本研究中,我们报告了一种可调的自组装过程,即使用 1 – 10 wt% 的单层至多层 Ti 3 C 2 T x MXene,在微米级 Al 颗粒上形成纳米厚的 2D MXene 薄片。此外,我们讨论了使用 2D x 射线衍射 (XRD 2 ) 对这些复合材料进行表征,以识别特征性的 Ti 3 C 2 T x 衍射峰。最后,我们使用原位 XRD 2 结合维氏硬度和扫描电子显微镜/能量色散 x 射线光谱法来了解烧结对 Ti 3 C 2 T x 形态的影响以及由此产生的块状复合材料的机械性能。这项研究旨在帮助未来在 MXene-金属复合材料的增材制造方面取得进展,以用于一系列多功能应用。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“
复合材料的力学性能并不令人满意,最初认为是由于Al层和Ag基体之间的相互扩散所致[22]。2011年,Gogotsi和Barsoum[23-24]合作通过从母体Ti3AlC2中选择性刻蚀掉Al原子平面,制备出一种具有二维结构的新型碳化物材料(Ti3C2Tx),称为MXenes。目前,Ti3C2Tx已受到许多应用领域的广泛关注[25-29]。Ti3C2Tx具有大的比表面积、良好的电导性、导热性和亲水性[30],是一种很有前途的导电复合材料增强体。具体来说,Ti3C2TX 已展示出其作为聚合物(PVA、PAM、PEI、PAN 等)、陶瓷(MoS2、TiO2 等)和碳材料(CNT、MWCNT、CNFs 等)复合材料添加剂的潜力[31]。因此,导电 Ti3C2TX 有望增强 Ag 基体成为一种新型电接触材料。本研究探索了 MXenes 在电接触材料中的应用。采用粉末冶金法制备了 Ti3C2TX 增强 Ag 基复合材料,研究了其电阻率、硬度、机械加工性、拉伸强度、抗电弧侵蚀等综合性能,并与 Ti3AlC2 陶瓷增强 Ag 基复合材料进行了比较。对两类样品性能差异的机理进行了分析和总结。研究结果将为今后新一代环保型银陶瓷复合电接触材料的设计与制备提供重要数据。
液体中的脉冲激光消融(PLAL)是一种合成具有控制尺寸和形态的高纯度,无配体纳米材料的技术。这项研究的重点是通过在193 nm处使用重点的脉冲精液激光和2-4 J/cm 2(5 Hz的150 MJ,持续30分钟150 MJ),侧重于MXENE纳米结构(TI₃C₂)的合成。在去离子水和十二烷基硫酸盐分散剂的溶剂混合物中,使用2 mm厚的直径和5 mm的ti₃c₂靶标,在瞬态条件下,在约2,000 k温度和10⁷10⁸10⁸PA压力的瞬态条件下产生纳米结构的mxenes。该方法可最大程度地减少前体和副产品的污染,从而确切地控制纳米颗粒的大小和分布,同时保留结构完整性和功能特性。使用扫描电子显微镜(SEM)和能量色散光谱(EDS)来表征合成的MXENE(EDS),并揭示了不同的形态,例如皱纹的板状结构,例如石墨烯氧化物,均匀的纳米结构,均匀的纳米结构一致的2D FLAKES一致,表明较薄,均匀的合成:均匀的分层:在EDS光谱中观察到氧化。这项研究证明了对产生高质量MXENE纳米颗粒的皮质方法的生存能力,并为纳米材料合成的未来创新提供了基础,用于其他多种2D技术应用。
摘要近年来,将二维MXENE与钙钛矿太阳能电池掺入引起了很多关注。mxenes由于其表面终止功能组T X而显示出独特的电气功能。此外,将这种材料纳入钙钛矿太阳能电池已导致效率提高并提高了光电性能。在目前的工作中,使用comsol多物理学来模拟由电子传输层(ETL)组成的掺杂的钙钛矿太阳能电池,由钙钛矿(MAPBI 3)和MXENE(TI 3 C 2 T X)和带有配置ETL/ MAPBI 3 + MX的吸收层(MAPBI 3)和孔传输层(HTL)和孔传输层(HTL)。用于材料,将TIO 2(120 nm)用作ETL,并将螺旋形(140 nm)用作HTL。对吸收层(MAPBI 3 + MXENE)的厚度和浓度的影响进行了彻底研究以提高其效率。然后使用理想的厚度和掺杂浓度的理想变化来告知最佳太阳能电池结构的设计,该结构的最大效率为19.87%,填充系数为0.57,开路电压(V OC)为1.10V,短路电流电流密度(J SC)为31.97 mA/cm/cm 2。据我们所知,这是Comsol多物理学首次用于模拟用2D Ti 3 C 2 T X MXENE掺杂的钙钛矿太阳能电池。因此,结果给出了有意义的指导和洞察力,并深入研究了掺杂的钙岩太阳能电池的制造和进一步研究。关键字:Perovskite,mxene,comsol,仿真。
过渡金属碳化物(MXENES)是具有出色特性的新型2D纳米材料,对诸如储能,催化和能量转化等应用的有希望的显着影响。阻止MXENES广泛使用的主要障碍是缺乏在3D空间中组装MXENE的方法,而无需重大的恢复,从而降低了其性能。在这里,通过引入一种新型材料系统来成功克服这一挑战:在多孔陶瓷主链上形成的MXENE的3D网络。主干决定了网络的3D体系结构,同时提供了机械强度,气体/液体渗透性和其他有益特性。冻结铸件用于制造带有开放孔和受控孔隙率的二氧化硅主链。接下来,墨西哥流用于从分散体中将Mxene填充到主链中。然后将系统干燥以将孔壁与MXENE一起覆盖,从而形成一个相互连接的3D-MXENE网络。制造方法是可重现的,MXENE填充的多孔二氧化硅(MX-PS)系统是高导电性的(例如340 S m-1)。MX-PS的电导率受孔隙率分布,MXENE浓度和内部填充周期的数量控制。带有MX-PS电极的三明治型超电容器显示出极好的面积电容(7.24 f cm-2)和能量密度(0.32 MWH cm-2),仅添加了6%的MXENE MXENE质量。这种创建2D纳米材料的3D体系结构的方法将显着影响许多工程应用程序。
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容