细胞差异受到基因调节的复杂层的控制,涉及各种转录调节剂对基因表达的调节。由于基因调节的复杂性,识别跨不同轨迹的主调节剂一直是一个长期的挑战。为了解决此问题,提出了一个计算框架,单细胞布尔网络推理和控制(Benein)。将有益的人用于人类大肠单细胞转录组数据,MYB,HDAC2和FOXA2被鉴定为主要调节剂,其抑制作用会诱导肠细胞的不同。发现,通过协同诱导差异和抑制恶性肿瘤,可以同时敲除这些主要调节剂可以将结直肠癌细胞恢复到正常的肠细胞中,从而通过体外和体内实验验证了恶性肿瘤。
腺样囊性癌 (ACC) 是一种侵袭性肿瘤,易于远处转移和神经周围侵犯。这种肿瘤更常见于头颈部,主要见于唾液腺。一般而言,ACC 的主要治疗方式是手术切除,某些情况下也进行术后放疗。但对于晚期患者,尚无有效的全身治疗。此外,这种肿瘤类型的特征是复发性分子改变,尤其是涉及 MYB、MYBL1 和 NFIB 基因的重排。此外,他们还报道了影响基因的拷贝数变异 (CNA)。其中之一是 C-KIT,它会影响信号通路,例如 NOTCH、PI3KCA 和 PTEN,以及染色质重塑基因的变异。新分子靶点的识别使我们能够开发特定的疗法。尽管对免疫疗法、酪氨酸激酶抑制剂和抗血管生成药物的研究仍在进行中,但 FDA 尚未批准任何针对 ACC 的全身疗法。在本综述中,我们报告了头颈部 ACC 的遗传和细胞遗传学发现,并强调了治疗干预的可能目标。
摘要:抗癌药物光神霉素 (MTH) 已被提议用于药物再利用,因为人们发现它是 β-地中海贫血患者的红系前体细胞 (ErPC) 中胎儿血红蛋白 (HbF) 产生的有效诱导剂。在这方面,先前发表的研究表明,MTH 在诱导红系细胞中 γ-珠蛋白基因表达增加方面非常活跃。这具有临床意义,因为已经确定 HbF 诱导是治疗 β-地中海贫血和改善镰状细胞病 (SCD) 临床参数的有效方法。因此,识别 MTH 生化/分子靶点具有重要意义。这项研究受到最近有力证据的启发,这些证据表明,γ-珠蛋白基因的表达在成人红系细胞中受不同转录抑制因子的控制,包括 Oct4、MYB、BCL11A、Sp1、KLF3 等。其中,BCL11A 非常重要。本文报告了证据表明,在 MTH 介导的红细胞分化过程中,BCL11A 基因表达和生物学功能发生了改变。我们的研究表明,MTH 的作用机制之一是下调 BCL11A 基因的转录,而第二种作用机制是抑制 BCL11A 复合物与 γ 珠蛋白基因启动子的特定序列之间的分子相互作用。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。
淋巴结外自然杀伤 (NK)/T 细胞淋巴瘤,鼻型 (ENKTCL) 是一种高度侵袭性的淋巴瘤,其中肿瘤抑制基因 PRDM1 经常丢失或失活。我们采用了两种不同的 CRISPR/Cas9 方法来生成 PRDM1 -/- 原代 NK 细胞,以研究该基因在 NK 细胞稳态中的作用。与野生型相比,PRDM1 -/- NK 细胞的克隆效率显著提高、增殖率更高、凋亡更少。基因表达谱显示,在 PRDM1 -/- NK 细胞中,与增殖、细胞周期、MYC、MYB 和 TCR/NK 信号相关的通路显著富集,但与正常细胞功能(包括细胞毒功能)相关的通路被下调,这表明 PRDM1 的缺失使 NK 细胞转向增殖和存活,而不是发挥其正常功能。我们还能够进一步修改 PRDM1 缺失的克隆,以引入 ENKTCL 中常见的肿瘤抑制基因(如 TP53、DDX3X 和 PTPN6)的杂合缺失。我们建立了体外模型来阐明 PRDM1 介导其对 NK 细胞的稳态控制的主要途径。这种方法可以应用于研究淋巴瘤发病机制中的其他相关遗传病变和致癌协同作用。
过敏(DIR)蛋白是木质素和木质蛋白生物合成的关键调节剂,在植物激素反应,非生物胁迫耐受性以及生长和发育中起关键作用。这项研究鉴定并表征了Moso Bamboo中的47个Pedir基因,将其分为三组。系统发育和比较分析显示出强烈的进化保守性,Moso Bamboo Pedir基因与水稻和玉米中的基因密切相关。dir蛋白在每个亚家族中均表现出较高的基序组成,结构域结构和3D配置。亚细胞定位和蛋白质相互作用研究进一步阐明了踏板基因的功能。特别是PEDIR02主要定位于细胞膜,被证明无法在酵母两杂交(Y2H)测定中形成同型二聚体。转录组和表达分析揭示了Pedir基因在快速芽生长中的参与,表明在木质素生物合成和细胞壁修饰中作用。转录组和QRT-PCR数据还证明了这些基因对激素和非生物胁迫(例如干旱和盐度)的反应性。这项研究构建了转录因子(TFS)和PEDIR基因之间的第一个全面的调节网络,将ERF,DOF和MYB TFS识别为PEDIR基因表达的关键协同调节剂。
Glyceollins是一种在豆类物种中引起的植物毒素家族,在环境压力反应(例如防御病原体)和人类健康中起着至关重要的作用。However, little is known about the genetic basis of glyceollin elicitation.在本研究中,我们采用了一种基于代谢物的基因组 - 宽缔合方法(MGWA)方法来鉴定在遗传多样的甘油蛋白诱导的候选基因,并正在研究遭受大豆囊肿线虫的野生大豆。In total, eight SNPs on chromosomes 3, 9, 13, 15, and 20 showed signi fi cant associations with glyceollin elicitation.六个基因分为两个基因簇,它们在苯基丙烷途径中编码糖基转移酶,并在物理上接近染色体9。此外,还发现转录因子(TFS)基因(例如MYB和WRKY)是有前途的候选基因,与染色体上的显着SNP紧密联系。Notably, four signi fi cant SNPs on chromosome 9 show epistasis and a strong signal for selection.The fi ndings describe the genetic foundation of glyceollin biosynthesis in wild soybeans; the identi fi ed genes are predicted to play a signi fi cant role in glyceollin elicitation regulation in wild soybeans.此外,自然种群中的上皮相互作用和选择影响甘油蛋白的变异如何应进一步研究以阐明甘糖苷生物合成的分子机制。
理由:心肌缺血/再灌注(I/R)损伤导致不可逆的心肌细胞死亡并加剧心肌梗塞。去泛素化酶(DUB)对于维持底物蛋白质稳定性和功能性,在心脏病理生理学中起着重要作用。在这项研究中,我们旨在阐明在心肌I/R损伤中,类似DUB,类Myb样,SWIRM和MPN结构域1蛋白(MYSM1)的调节作用,并探索背后的分子机制。方法和结果:首先,发现MySM1的表达与心肌I/R损伤呈正相关。MySM1的遗传敲低可显着赋予心脏中I/R伤害的保护。相应地,AAV9介导的MySM1的心肌细胞特异性敲低对心肌I/R损伤具有治疗作用。通过全面的蛋白质组定量分析,我们将转录1(STAT1)的信号传感器和激活因子确定为MySM1的直接底物。从机械上讲,MySM1通过其MPN金属蛋白酶结构域介导了K63连接的STAT1的K63连接去泛素化和稳定。此外,MySM1通过促进STAT1的转录因子函数来启动与坏死相关的基因的表达。结论:这项研究说明了调节心肌I/R损伤的MySM1-Stat1轴,并将MySM1确定为心肌I/R损伤的药理靶标。
唾液腺癌 (SGC) 占头颈部恶性肿瘤的不到 5%,进一步细分为 20 多种组织学亚型。在大多数情况下,晚期疾病的治疗以形态学为指导。SGC 通常对标准化疗反应不佳,持续时间短且毒性大。最近,下一代测序为每种 SGC 亚型的分子表征提供了重要输入,不仅改善了形态相似的肿瘤类型之间的诊断区分,而且还确定了决定肿瘤生物学并可能适合靶向治疗的新驱动通路。最常见的组织学亚型是腺样囊性癌,它通常带有染色体易位,导致 MYB-NFIB 致癌基因,Myb 表达程度不同。在较小的亚群中,发生了 NOTCH1 突变,导致疾病更具侵袭性,并且可能对 Notch 抑制剂敏感。唾液导管癌可能过度表达 Her-2 和雄激素受体,在接受获批用于其他适应症的靶向治疗后,临床结果良好。分泌性癌,以前称为乳腺类似分泌性癌,以 ETV6-NTRK3 融合为特征,这既有助于将其与形态相似的腺泡细胞癌区分开来,也使其易受 Trk 抑制剂的影响。在本文中,我们讨论了最常见的 SGC 亚型的分子异常、它们对肿瘤生物学的影响和治疗机会,并回顾了这种罕见疾病的已发表和正在进行的临床试验和未来前景。
1 生物技术,佩奇大学医学院,7624 佩奇,匈牙利;TMFDPP@pte.hu 2 遗传工程和生物技术系,生物科学和技术学院,贾肖尔科技大学(JUST),贾肖尔 7408,孟加拉国;partha_160626@just.edu.bd (PB);150623.gebt@student.just.edu.bd (MAK);aminul_180603@just.edu.bd (MAI);160602.gebt@student.just.edu.bd (MYB) 3 ABEx 生物研究中心,东阿扎姆普尔,达卡 1230,孟加拉国;hasanurrahman.bge@gmail.com (MHR); tanjimishraq@gmail.com (TIR) 4 孟加拉国国父谢赫·穆吉布·拉赫曼科技大学生命科学学院生物化学与分子生物学系,Gopalganj 8100,孟加拉国;diptadey727@gmail.com (DD);paul.bmb011@gmail.com (PP) 5 匈牙利农业与生命科学大学农业生物技术,2100 Godollo,匈牙利;Miss.Ismoth.Ara.Tripty@hallgato.uni-szie.hu 6 孟加拉国国父谢赫·穆吉布·拉赫曼科技大学生物技术和遗传工程系,Gopalganj 8100,孟加拉国 7 全球生物技术与生物医学研究网络(GBBRN),伊斯兰大学生物科学学院生物技术和遗传工程系,Kushtia 7003,孟加拉国; ataur1981rahman@hotmail.com 8 韩国庆熙大学韩医学院病理学系,首尔 02447,韩国 9 韩国庆熙大学韩医学院韩医药物重新定位癌症研究中心,首尔 02447,韩国 10 孟加拉国贾肖尔科技大学(JUST)生物科学与技术学院遗传工程与生物技术系制药生物技术实验室,贾肖尔 7408,贾肖尔 * 通信地址:mn.hasan@just.edu.bd(MNH);bongleekim@khu.ac.kr(BK)† 这些作者对这项工作做出了同等贡献。