一般权利 一般权利 PEARL 中的所有内容均受版权法保护。作者手稿根据出版商政策提供。请使用项目记录或文档中提供的详细信息仅引用已发布的版本。在没有开放许可证(例如知识共享)的情况下,应从出版商或作者处获得进一步重复使用内容的许可。 删除政策 删除政策 如果您认为此文档侵犯了版权,请联系图书馆提供详细信息,我们将立即删除对该作品的访问权限并调查您的索赔。 关注此作品和其他作品:https://pearl.plymouth.ac.uk/secam-research
日期 时间 事件 切片编号 高度(英寸) 重启 暴露在空气中? 2020 年 1 月 16 日 构建完成 8889 14 2020 年 1 月 14 日 5:10 断电 8764 13.805 7:01 无主动清除,腔室密封 2020 年 1 月 11 日 14:13 电压下降 8084 12.731 14:25 无主动清除,腔室密封 2020 年 1 月 8 日 17:41 空溢流 6562 10.332 18:47 暴露在空气中 2020 年 1 月 4 日 12:48 空溢流 2968 4.674 13:14 暴露在空气中 2019 年 12 月 30 日 构建开始 0 0
抽象的Maraging钢是一种低碳钢,以其热处理后的超高强度而闻名。与添加剂制造(AM)结合使用,Maraging Steel的特性表明有可能实现复杂的几何形状,并提高了弹道保护的性能与重量比率。本研究研究了由粉末床融合制造的AM Maraging钢整体板和轮廓面板的弹道性能。在截然不同的状态和热处理后,Maraging钢的机械性能通过与构建方向相对于三个不同方向的准静态和动态测试揭示。还进行了冶金研究,以研究测试前后材料的微观结构。通过向不同的目标构型发射7.62 mm APM2子弹,在弹道范围内披露了Maraging钢样品的弹道穿孔电阻。获得了弹道极限曲线和速度,表明最厚的热处理钢板具有特别良好的弹道保护潜力。在所有测试中均打破了装甲穿刺子弹的硬芯,并在用热处理靶标进行测试中偶尔会破碎。然而,由于材料的严重脆性,靶标在某些情况下显示出明显的碎片化,最显着的剖面图。
采用增材制造工艺生产的产品已引起工程、医疗保健和整个社会的高度关注。然而,人们对增材制造合金的失效知之甚少,尤其是大多数工程应用中常见的腐蚀和磨损。这种合金的随意和低效使用引发了人们对安全性、兼容性、可靠性、成本和消费者满意度的担忧。为了解决这些问题,我们根据已发表的文献研究了通过增材制造制造的合金最常见的失效模式——腐蚀和磨损的机制。研究发现,加工条件对合金的微观结构以及耐腐蚀和耐磨性有着深远的影响。由于层状结构,腐蚀和磨损的起始和发展都表现出各向异性行为。本综述的见解可作为最先进技术的参考,并有助于开发未来具有更好耐腐蚀和耐磨性能的增材制造合金。[DOI:10.1115/1.4050503]
有人提议通过重复同质单元细胞来开发超生物材料,用于骨科应用,以解决这些问题(Matassi 等人,2013 年;Van Hooreweder 等人,2017 年)。超生物材料凭借微架构设计结构的优势,展现出独特的机械和生物特性。这一特性使得突破性的患者专用承重植入物设计成为可能:(i)适合外科手术几何形状(Jun 等人,2010 年;Stoor 等人,2017 年),(ii)模仿天然骨的机械特性(Helguero 等人,2017 年;Zhang 等人,2018 年),以及(iii)为自然生物固定提供高表面(Long 等人,2012 年;Schouman 等人,2016 年)。可以合理设计孔隙形状、孔隙大小和孔隙率等单元特征,以实现承载能力(Montazerian 等人,2017 年;Torres Sanchez 等人,2018 年)。定制孔隙率可以降低刚度,以适应骨骼特性,从而增强植入物的功能(Jakus 等人,2018 年;X. Wang 等人,2016 年)。
摘要:在染料敏化的太阳能电池(DSSC)中,反电极(CE)作为电子传递剂和氧化还原夫妇的再生剂起着至关重要的作用。与通常由玻璃基底物(例如FTO/玻璃)制成的常规CE,聚合物底物似乎是新兴的候选物,这是由于它们的内在特性轻巧,高耐用性和低成本。尽管有很大的希望,但当前的CES在聚合物基板上的制造方法遭受了严重的局限性,包括低电导率,可伸缩性,过程复杂性以及对专用真空设备的需求。在本研究中,我们采用并评估了一条完全的加性制造路线,该路线可以以高通量和环保的方式为DSSC制造CE,并提高性能。提出的方法顺序包括:(1)材料挤出3-D打印聚合物底物; (2)通过冷喷雾颗粒沉积的导电表面金属化; (3)用石墨铅笔过度涂层薄层催化剂。制造的电极的特征是微结构,电导率和光转换效率。由于其有前途的电导率(8.5×10 4 S·M-1)和微区岩石表面结构(rA≈6.32µm),与由FTO/Glass制成的传统C相比,具有添加性生产的CES的DSSC导致了繁殖的CES,导致了约2.5倍的光率效率。研究结果表明,提出的添加剂制造方法可以通过解决常规CE制造平台的局限性来推动DSSC的领域。
住房和城市发展部的要求。凸窗 - 其最大水平突出部分距离外墙平面不超过两英尺,且高出房屋地板的窗户组件。认证标签是指制造商批准的认证形式,根据 § 3280.8,该标签永久粘贴在美国制造以供销售的每个活动房屋的每个可移动部分上。住宅单元是指一个或多个可居住的房间,设计供一个家庭居住,并配有生活、睡眠、烹饪和饮食设施。设备包括活动房屋的建造以及消防、管道、供热和电气系统中使用的材料、器具、设备、固定装置、配件或附件。联邦预制房屋建造和安全标准是指预制房屋建造、设计和性能的合理标准,以满足公众的需求,包括质量、耐久性和安全性。设施是指预制房屋中使用的所有施工安排和方法,以及消防安全、管道、产热和电气系统。标签是指国家认可的测试实验室、检验机构或其他与产品评估有关的组织的标签、符号或其他识别标记,这些组织定期对产品进行检验
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
严格的要求和苛刻的设备规范可以确保在成熟的供应链中建立良好的质量,例如专门提供它们的供应链,例如熟悉强大的核安全文化和质量保证意识的顶级核供应商。但是,当首先将这些要求引入为其他行业服务的较低层供应商,或者很少要求时,它们可能会使通常稳定的制造过程感到不安并提高成本和复杂性。矛盾的是,在这种情况下,质量保证和控制的增加可能会导致较小的符合性和可靠性。这是由于制造过程设置和产品设计细节的变化,以仅满足核需求。由于制造商第一次或间歇性地面对核工业的要求,他们可能会在预测满足这些要求和相关时间表的确切手段方面存在困难。制造商的学习曲线在很大程度上是质量保证过程变化的结果,如果制造商组织内部存在资源限制,则可能需要时间。