研究并报告了使用基于挤出的AM技术制造的添加性生产(AM)连续碳纤维增强热塑性(CFRTP)的完整机械性能(拉伸,压缩和剪切性能)。在各种机械测试中研究并报告了AM CFRTP的断裂模式。各向异性机械性能,纤维方向具有最高的强度和刚度,并且层方向具有最低的强度和刚度。使用实验中获得的机械性能设计和制造了概念拓扑验证的优化无人机起落架。进行的有限元分析和压缩测试表明,使用AM CFRTP制造的无人机起落架结构能够在操作过程中生存最极端的状况。
缺席了五十年之后,NASA根据Artemis计划重返月球表面 - 用于长期的人类勘探和利用 - 正在为小型卫星和小型陆地平台提供商业和学术机会(例如,商业月球付费量服务计划 - CLPS)。双旋转剂推进器是一种可靠,低风险和飞行验证的方法,用于用于进入,下降和降落(EDL)或空间附近操作所需的复杂操作所需的推进和态度控制。但是,由于过去十年来竞争激烈的商业太空市场,卫星子系统还必须负担得起,以购买最终的任务设计和工程解决方案。Therefore starting in 2019, and based off prior satellite integration work, Aerojet Rocketdyne (AR) undertook an advanced propulsion development effort to combine modern metal additive manufacturing (AM) techniques with thrust scalable hypergolic MON-25 propulsion technology to create a high performance and fully integrated (i.e., multiple thrusters integrated into a single package) reaction control system (RCS) at a fraction of the production cost when compared to the由单个推进器组装的遗产设计。RCS设计的开发点来自一系列新型的添加性制造推进器系列,稳定地燃烧了5 lbf和100 lbf的推力水平,用单甲基羟基津(MMH)燃料燃烧挥发性MON-25氧化剂。在子系统级别的成本降低了零件和功能的AM集成,从而减少了材料的构建,触摸劳动和组装时间。此外,AM允许设计适应不断变化的要求,例如推进器的数量,方向和推力水平。通过利用MON-25的较低冰点为-55°C(与传统的二氧化二氧化氧化氧化氧化氧化剂相比)来降低卫星水平的成本,以最大程度地减少质量,热量和功率需求,同时在深空环境中运行。此外,对于MMH/MON-25的相等体积混合比率的推进器操作允许在操纵过程中采用模块化方法进行储罐设计和可预测的重心。本文概述了ISE-5和ISE-100 MON-25推进器技术,该技术为集成设计和AM RCS概念本身的开发进步提供动力。这包括减少练习活动,例如概念证明AM材料测试示威者和水流测试单元。
铌硅钢 70.63 22.58 1.51 0.17 6.90 γ-铌硅钢 32.99 25.64 34.36 6.65 1.02 α-铌硅钢 47.92 13.66 35.22 2.95 0.24
治疗大骨缺损仍然是没有完美解决方案的临床挑战,这主要是由于合适的骨植入物无法获得。添加性生产(AM)可吸收的多孔金属提供了无与伦比的机会,以实现对骨可能性植入物的挑战性要求。首先,可以定制这种植入物的多尺度几何形状,以模仿人骨的微体系结构和机械性能。相互联系的多孔结构还增加了表面积,以促进骨细胞的粘附和增殖。最后,它们的吸收特性是可以调节的,可以在整个骨骼愈合过程中维持植入物的结构完整性,从而确保在需要时确保舒适的负载,并在完成工作后完全分解。这种特性的组合为完整的骨再生和重塑铺平了道路。在开发理想的多孔可吸收金属植入物时,彻底表征生物降解行为,机械性能和骨再生能力很重要。我们回顾了由选择性激光熔化(SLM)生产的可吸收多孔金属的最新,重点是几何设计,材料类型,加工和后处理。后一个方面对吸收行为,由此产生的机械性能和细胞相容性的影响也将被讨论。与其坚固的惰性对应物相比,AM可吸收多孔金属(APM)显示出许多独特的特性,并具有巨大的潜力,以进一步优化其应用特异性性能,这是由于其灵活的几何设计。我们进一步强调了为将来的骨科解决方案采用AM APM时面临的挑战。
1武汉大学,武汉大学,武湖路,武汉区,武汉区430072,中国; zhou_jiantao@whu.edu.cn(J.Z.); leo_han@whu.edu.cn(X.H.); shen_shengnan@whu.edu.cn(S.S。); zhang_dongqi@whu.edu.cn(d.z。)2 2,纽膨恩大学,纽汉南路,南汉区,深圳市518057工程大学,巴基亚区的长大路(Changle East Road),西安710038,中国; dr_zhouxin@126.com *通信:li_hui@whu.edu.cn(H.L. ); shengliu@whu.edu.cn(s.l. );电话。 : +86-027-68770273(H.L. ); +86-138-7125-1668(S.L.)2,纽膨恩大学,纽汉南路,南汉区,深圳市518057工程大学,巴基亚区的长大路(Changle East Road),西安710038,中国; dr_zhouxin@126.com *通信:li_hui@whu.edu.cn(H.L.); shengliu@whu.edu.cn(s.l.);电话。: +86-027-68770273(H.L.); +86-138-7125-1668(S.L.)
1 Froes, Francis 和 Rodney Boyer。2019 年。增材制造在航空航天工业中的应用。Elsevier Science。2 同上。3 McCue, TJ。2019 年。“3D 打印市场规模预计将飙升至 356 亿美元。”《福布斯》。3 月 27 日。4 Lord, Ellen M。2019 年。“指令型备忘录 (DTM)-19-006。”《使用增材制造 (AM) 支持物资保障的临时政策和指导》。5 George, Major Benjamin E。2014 年。3D 打印在空军中的应用 - 打破增材制造的迷思。麦克斯韦空军基地:空军大学 6 Scott, Alwyn。2017 年。“打印的钛合金部件有望为波音梦想飞机节省数百万美元的成本。”Reuters.com。4 月 10 日。7 Kellner, Thomas。 2018。“启动:通用电气成功测试了采用 3D 打印部件的先进涡轮螺旋桨发动机。”GE.com。1 月 2 日。8 Simpson, Joseph 等人。2019。增材制造在核反应堆核心部件中的应用考虑因素。ORNL/TM-2019/1190,橡树岭国家实验室。9 2014。“SpaceX 将 3D 打印部件发射到太空,创建打印的发动机舱。”SpaceX.com。7 月 31 日。10 2019。“更新:飞行中止静态点火测试异常调查。”SpaceX.com。7 月 15 日。11 “增材制造的 7 个系列。”Hybridmanutech.com。2019 年 12 月 30 日访问。12 2017。“高级工艺 - 定向能量沉积、粉末床熔合、粘合剂喷射。”比特变成原子 - 3D 打印和设计。4 月 30 日。13 Seifi, Mohsen、Ayman Salem、Jack Beuth、Ola Harrysson 和 John J. Lewandowski。2016 年。“金属增材制造的材料鉴定需求概述。”矿物、金属与材料学会杂志 66 (3): 747-764。14 同上。15 Brackens, Brian。2019 年。“空军成立新的先进飞机 PEO。”AF.mil。10 月 3 日。16 Insinna, Valerie。2019 年。“美国空军针对未来战斗机的激进计划可能会在 5 年内部署一架喷气式飞机。”DefenseNews.com。9 月 16 日 17 Roper, Will。2019 年。“星条旗。”3D 打印即将为军方节省数十亿美元。 12 月 26 日。18 国防部监察长。2019 年。“对国防部使用增材制造技术生产维持部件的审计。”报告编号 DODIG-2020-003。
– 完全容许多种预成型几何形状 – 除了板/DED 接口区域外,还从 X 和 Z 方向测试了试样 – 迄今为止已测试了 1000 多个静态试样和 100 个动态试样
在使用CDOL系统启动新应用程序之前,申请人组织必须验证和更新组织信息。要这样做,请从“组织”标题下的“组织”名称右侧的“视图”按钮登录并从“视图”按钮。HCR已存档的组织信息将出现一个弹出窗口。如果显示的任何信息不正确或需要更新,请关闭弹出窗口,然后在组织名称右侧选择“编辑”按钮。请确保包括授权与HTFC签订合同的联系人的姓名和邮寄地址。对于HCR和HTFC而言,重要的是要知道在哪里邮寄潜在奖励和合同材料。组织可以随时更新其在CDOL中的组织信息,但一旦提交了应用程序,就不会更改组织信息。CDOL申请人信息字段要审查和验证:A。一般申请人信息
单点钻石加工(SPDM)产生其他生产方法无法匹配的光滑加工表面。虽然对用SPDM进行铸造合金的机制进行了充分探索,但添加性制造零件的SPDM领域仍在很大程度上都没有。这项工作揭示了对添加性钛合金的表面产生过程的新见解,特别是Ti6al4v额外的低间隙(ELI)合金工件。我们对芯片形态的检查揭示了一种独特的芯片去除方式,该模式以前未记录在现有文献中。在添加性的TI6AL4V ELI工件的SPDM中,鉴定出在工具耙面上流动的芯片中的许多毛孔和不连续性,表明在材料的塑料流中看到了周期性间歇性裂纹。为了检查这种现象,开发了有限元分析(FEA)模型。尽管FEA模型可以很好地解释文献中报道的Cast Ti6al4v Eli的SPDM的加工力学和芯片形态,但它未能描述在这项工作中加化性工件加工过程中获得的芯片形态。这种差异强调了针对加上制造组件量身定制的创新模拟方法的需求。这项研究中的实验性OB用途强调了芯片形成的独特形式,与常规的TI6AL4V合金加工过程相反。在较低的饲料中,存在短而不连续的芯片形成,外围的撕裂。相反,在较高的饲料下,观察到了长,连续的带状芯片形成。此外,一些典型的添加剂制造缺陷出现在加工表面和芯片上。通过优化SPDT参数,在Addi ti6al4v Eli工件上实现了大约11.8 nm的表面粗糙度(RA)值。这项工作提供了有关SPDM的化合物制造组件的机制的全新视角,为后续研究提供了垫脚石。