先生(右二)及Meridian Innovation (迈瑞迪创新) Stanislav Markov 博士(右一)在业界分享
•正常形式游戏(NFGS)•马尔可夫游戏(MGS)•两人零和马尔可夫游戏•多玩家通用 - 马尔可夫游戏•通过乐观算法更快地收敛•高级主题
提出了一种决策的量子动态模型,并将其与先前建立的马尔可夫模型进行了比较。量子模型和马尔可夫模型都被表述为随机游走决策过程,但这两种方法的概率原理不同。量子动力学描述了复值概率幅度随时间的演变,而马尔可夫模型描述了实值概率随时间的演变。量子动力学会产生干扰效应,而马尔可夫模型则不会产生这种效应。当两条可能路径的并集概率小于每条单独路径的概率时,就会发生干扰效应。推导出量子模型的选择概率和选择响应时间分布,并将预测与马尔可夫模型进行了对比。r 2006 Elsevier Inc. 保留所有权利。
马尔可夫决策过程使代理商与其环境之间的非确定性相互作用在可拖动的随机框架内进行建模。每次代理人观察当前状态,并采取行动,从而立即获得奖励。当时代理的目标是优化其预期的累积奖励。在数学上,马尔可夫决策问题是基于动态编程原则解决的,其框架是许多强化学习算法的基础,例如,例如Q-学习算法。有关马尔可夫决策过程的理论,请参见[5,10,25,26],以及[1,6,7,11,11,12,15,20,29,33]有关其应用,尤其是在强化学习领域。在马尔可夫决策问题的经典设置中,给出了基础马尔可夫决策过程的过渡概率的过渡内核。从经济上讲,这意味着代理具有对基本过程的真实分布的了解,这通常在实践中不能做出理由。为了解决这个问题,学者们最近引入了马尔可夫决策问题的强大版本,以说明假定的潜在概率内核可能的误约
数学526/Stats 526。离散状态随机过程Cohen,ASAF T/T t/t Th 10:00 AM-11:30 AM Cohen,ASAF T/TH 11:30 AM-1:00 PM TBD T/TH T/TH 8:30 AM-10:00 AM MATH 525或Stats 525或STAT 525或EEC 525或EECS 525或EECS 501。(3)。(BS)。可能不会重复以获得信用。这是关于随机过程在离散状态空间上的理论和应用的课程。一些特定主题包括:(1)马尔可夫链 - 马尔可夫属性, - 复发和瞬态, - 平稳性, - 千古, - 耦合, - 退出概率和预期的退出时间; (2)马尔可夫决策过程 - 最佳控制, - Banach固定点定理; (3)指数分布和泊松过程 - 无内存的特性, - 变薄和叠加, - 复合泊松过程; (4)Markov连续时间 - 发电机和Kolmogorov方程, - 嵌入了马尔可夫链, - 固定分布并限制定理, - 退出概率和预期的退出时间, - 马尔可夫队列; (5)Martingales - 有条件的期望, - 与Martingales的赌博(交易), - 可选采样, - 用于计算退出概率和预期退出时间的应用, - Martingale Convergence。
我们介绍了动态上下文Markov Deci-Sion过程(DCMDPS),这是一个新颖的增强学习框架,用于与历史有关的环境,该框架概括了上下文的MDP框架来处理非Markov环境,其中上下文随时间而变化。我们考虑了模型的特殊情况,重点关注dcmdps,这通过利用粒子函数来确定上下文转换,从而破坏了对历史长度的指数性。这种特殊的结构使我们能够得出一种上层封闭的样式算法,我们为此建立了遗憾的界限。以我们的口感结果的启发,我们引入了一种基于模型的实用算法,用于在潜在空间中计划,并在历史依赖的特征上使用乐观态度。我们在推荐任务(使用Movielens数据)上演示了我们方法的效率,在该任务中,用户行为动态响应建议而演变。
12什么是插值?2M L1 CO2 II 13什么是决策树?2M L1 CO3 III 14什么是分类?2M L1 CO3 III 15什么是回归?2M L1 CO3 III中期问题问题16什么是什么提升?2M L1 CO3 III 17什么是包装? 2M L1 CO3 III 18什么是分类器? 2M L1 CO3 III 19定义LDA。 2M L1 CO4 IV 20写下PCA和ALDA的任何两个区别。 2M L1 CO4 IV 21机器学习的数据减少是什么? 2M L1 CO4 IV 22什么是进化学习? 2M L1 CO4 IV 23什么是遗传后代? 2M L1 CO4 IV 24什么是遗传算子? 2M L1 CO4 IV 25什么是强化学习? 2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络? 2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO3 III 17什么是包装?2M L1 CO3 III 18什么是分类器?2M L1 CO3 III 19定义LDA。 2M L1 CO4 IV 20写下PCA和ALDA的任何两个区别。 2M L1 CO4 IV 21机器学习的数据减少是什么? 2M L1 CO4 IV 22什么是进化学习? 2M L1 CO4 IV 23什么是遗传后代? 2M L1 CO4 IV 24什么是遗传算子? 2M L1 CO4 IV 25什么是强化学习? 2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络? 2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO3 III 19定义LDA。2M L1 CO4 IV 20写下PCA和ALDA的任何两个区别。2M L1 CO4 IV 21机器学习的数据减少是什么?2M L1 CO4 IV 22什么是进化学习? 2M L1 CO4 IV 23什么是遗传后代? 2M L1 CO4 IV 24什么是遗传算子? 2M L1 CO4 IV 25什么是强化学习? 2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络? 2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO4 IV 22什么是进化学习?2M L1 CO4 IV 23什么是遗传后代?2M L1 CO4 IV 24什么是遗传算子?2M L1 CO4 IV 25什么是强化学习? 2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络? 2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO4 IV 25什么是强化学习?2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络? 2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO5 V 26机器学习中的采样2M L1 CO5 V 27什么是贝叶斯网络?2M L1 CO5 V 28什么是提案分布? 2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO5 V 28什么是提案分布?2M L1 CO5 V 29 Markov随机字段的应用是什么? 2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO5 V 29 Markov随机字段的应用是什么?2M L1 CO5 V 30机器学习中的MDP是什么? 2M L1 CO5 V2M L1 CO5 V 30机器学习中的MDP是什么?2M L1 CO5 V
1,而不是将这个问题作为部分可观察到的马尔可夫决策过程(这将使客户特征都可以任意依赖历史数据而不是马尔可夫人,我们假设客户特征满足Markov属性。这个假设是合理的,因为公司可以合并一组有效总结长期历史的观察到的特征,而不是仅仅依靠上一个时期的行为。例如,在我们的经验环境中,我们从样本开始开始时说明了玩耍行为,过去一周的行为以及前一天的行为。
1 我们假设该问题为马尔可夫决策过程,而不是部分可观察的马尔可夫决策过程(即允许客户特征任意依赖于历史数据,而不是马尔可夫决策过程)。该过程的客户特征满足马尔可夫性质,因此该假设是合理的,因为公司可以整合一整套观察到的特征,从而有效地总结长期历史,而不是仅仅依赖于前一时期的行为。例如,在我们的实证环境中,我们考虑了样本期开始时的游戏行为、过去一周的行为以及前一天的行为。
单元 – 第一线性模型多层感知器 – 向前 – 向后:反向传播误差 – 实践中的多层感知器 – 使用 MLP 的示例 – 概述 – 推导反向传播 – 径向基函数和样条 – 概念 – RBF 网络 – 维数灾难 – 插值和基函数 – 支持向量机单元 – 第三树和概率模型用树学习 – 决策树 – 构建决策树 – 分类和回归树 – 集成学习 – 提升 – 装袋 – 组合分类器的不同方法 – 概率和学习 – 数据转化为概率 – 基本统计 – 高斯混合模型 – 最近邻方法 – 无监督学习 – K 均值算法 – 矢量量化 – 自组织特征映射。单元 – IV 降维和进化模型 降维 – 线性判别分析 – 主成分分析 – 因子分析 – 独立成分分析 – 局部线性嵌入 – Isomap – 最小二乘优化 – 进化学习 – 遗传算法 – 遗传后代:- 遗传算子 – 使用遗传算法 – 强化学习 – 概述 – 迷路示例 – 马尔可夫决策过程 单元 – V 图形模型 马尔可夫链蒙特卡罗方法 – 抽样 – 提案分布 – 马尔可夫链蒙特卡罗 – 图形模型 – 贝叶斯网络 – 马尔可夫随机场 – 隐马尔可夫模型 – 跟踪方法。
