1 圣保罗大学数学与计算机科学研究所,圣卡洛斯,圣保罗 13566-590,巴西 2 爱丁堡机器人中心,赫瑞瓦特大学,爱丁堡,苏格兰 EH14 4AS,英国 3 神经工程研究实验室,生物医学工程中心,坎皮纳斯大学,坎皮纳斯,圣保罗 13083-881,巴西 4 坎皮纳斯大学电气与计算机工程学院电子与生物医学工程系,坎皮纳斯,圣保罗 13083-852,巴西 5 健康科学中心,生理科学系,埃斯皮里图圣托联邦大学,维多利亚,埃斯皮里图圣托 29047-105,巴西 6 爱德蒙和莉莉萨夫拉国际神经科学研究所 (IINELS),桑托斯杜蒙特研究所,马卡伊巴,北里奥格兰德州59280-000,巴西 7 生物信息学多学科环境(BioME),北里奥格兰德联邦大学数字大都市研究所,纳塔尔,北里奥格兰德州 59078-970,巴西
摘要 我们的大脑不断对感官输入做出预测,并将其与实际输入进行比较,通过大脑区域的层次结构传播预测误差,随后更新对世界的内部预测。然而,预测编码的基本特征、层次深度的概念及其神经机制仍未得到充分探索。在这里,我们结合功能性磁共振成像 (fMRI) 和高密度全脑皮层电图 (ECoG),在听觉局部-全局范式中研究了狨猴的预测听觉处理的层次深度,其中刺激的时间规律被设计为两个层次。预测误差和预测更新被视为对听觉不匹配和遗漏的神经反应。使用 fMRI,我们确定了听觉通路上的层级梯度:中脑和感觉区域代表局部、较短时间尺度的预测处理,随后是联想听觉区域,而前颞叶和前额叶区域代表整体、较长时间尺度的序列处理。互补的 ECoG 记录证实了皮质表面区域的激活,并进一步区分了预测误差和更新信号,它们分别通过假定的自下而上的 γ 和自上而下的 β 振荡传输。此外,由于输入缺失而引起的遗漏反应仅反映了层级预测编码框架所特有的两个预测信号水平,证明了听觉、颞叶和前额叶区域自上而下的层级预测过程。因此,我们的研究结果支持分层预测编码框架,并概述了如何使用神经网络和时空动态来表示和安排狨猴大脑中听觉序列的分层结构。
Christopher Mezias *1,Bingxing Huo *2,Mihail Bota 1,Jaikishan Jayakumar 3,Partha P. Mitra +1对公共Marmoset的抽象兴趣正在增长,这是由于与实验室小鼠相比,与人类相比,与小鼠和Marmoset Brainecters的相比,与人类相比,由于与人类的进化近端而增长,包括鼠标和Marmoset Brainecters的类型,以及连接性的连接。创建一个可操作的比较平台很具有挑战性,因为这些大脑具有独特的空间组织和专家神经解剖学家的不同意。我们提出了一个一般的理论框架,以在整个分类单元之间将命名的地图集联系起来,并使用它来建立Marmoset和小鼠大脑之间的详细对应关系。与传统的观点相反,即大脑结构在较高级别的Atlas层次结构上可能更容易建立联系,我们发现尽管命名了差异,但在叶子水平上的细胞层次更细。利用现有的地图集和相关的文献,我们为这两个物种创建了叶片水平结构列表,并在它们之间建立了五种类型的对应关系。在小鼠中的43%的结构中发现了一到一条关系,而摩尔莫斯群岛的结构中有47%,而小鼠的25%和10%的棉花糖结构是无关的。其余结构显示了我们量化的一组更复杂的映射。通过这两个物种的体积图谱实现此对应关系,我们提供了一个计算工具,用于查询和可视化相应的大脑之间的关系。我们的发现为实验室小鼠和公共摩尔群岛中的中尺度连通性和细胞类型分布的计算比较分析提供了基础。
建立人类疾病的非人灵长类动物模型对于开发治疗策略尤其是神经退行性疾病的治疗策略非常重要。普通狨猴作为一种新的实验动物模型引起了人们的关注,许多转基因狨猴都是通过慢病毒载体介导的转基因产生的。然而,慢病毒载体在转基因应用中的长度限制为 8 kb 以下。因此,本研究旨在优化 piggyBac 转座子介导的基因转移方法,其中将长度超过 8 kb 的转基因注射到狨猴胚胎的卵周隙中,然后进行电穿孔。我们构建了一个携带阿尔茨海默病基因的长 piggyBac 载体。使用小鼠胚胎检查了 piggyBac 转基因载体与 piggyBac 转座酶 mRNA 的最佳重量比。在注射 1000 ng 转基因和转座酶 mRNA 的胚胎中,70.7% 的胚胎干细胞确认转基因整合到基因组中。在这些条件下,将长转基因引入狨猴胚胎。转基因引入处理后,所有胚胎均存活,70% 的狨猴胚胎中检测到了转基因。本研究开发的转座子介导的基因转移方法可应用于非人类灵长类动物以及大型动物的遗传修饰。
1个部门神经科学计划,耶鲁大学,纽黑文,CT 06510,美国2,美国2,耶鲁大学,纽黑文,纽黑文,CT 06520,美国3耶鲁大学医学院,纽黑文,纽黑文,CT 06510,CT 06510,美国4 Wu Tsai Institute,Yale Movity,New Haven,New Haven,Neur,CT 06510美国纽黑文市医学院,美国6耶鲁大学精神病学系,纽黑文,美国康涅狄格州06520 &Anirvan S. Nandy博士耶鲁大学P.O.Box 208047 New Haven,CT 06520 314-307-0498 Steve.chang@yale.edu.edu&Anivan.nandy@yale.edu摘要,近年来,神经科学领域越来越多地认识到在自然主义环境中研究动物行为以使自然主义环境中的动物行为的重要性,以使自然主义在道德上具有相关的洞察力洞察力,并具有相关的洞察力。普通的摩尔马斯群岛(Callithrix jacchus)由于其尺寸较小,亲社会性质和与人类的遗传近端,因此成为了这项工作的关键模型。然而,传统的研究方法通常无法完全捕捉马尔莫斯特社会互动和合作行为的细微差别。为了解决这一关键的差距,我们开发了用于自动拉力的摩尔摩斯特机器(Marmoaap),这是一种新型的行为式仪器,旨在研究共同果果会中的合作行为。marmoaap通过启用可以与视频和音频记录集成的高通量,详细的行为输出来解决传统行为研究方法的局限性,即使在自然主义环境中,也可以进行更细微和全面的分析。我们还强调了MarmoAAP在任务参数操作中的灵活性,该操作可容纳广泛的行为和单个动物能力。此外,Marmoaap提供了一个平台来对自然主义社会行为的神经活动进行调查。marmoaap是一种多功能且强大的工具,可促进我们对灵长类动物行为和相关认知过程的理解。这个新的设备弥合了与伦理学相关的动物行为研究与神经研究之间的差距,为使用摩尔马人作为模型生物体的认知和社会神经科学研究为未来的认知和社会神经科学研究铺平了道路。
背景:普通狨猴(Callithrix jacchus)是研究最多的灵长类模式生物之一。然而,公共数据库中可用的狨猴基因组高度碎片化且充满序列缺口,阻碍了与狨猴基因组学和转录组学相关的研究进展。结果:在这里,我们利用单分子、长读序列数据来改进和更新现有的基因组组装,并报告了近乎完整的普通狨猴基因组。组装大小为 2.79 Gb,重叠群 N50 长度为 6.37 Mb,染色体支架 N50 长度为 143.91 Mb,代表了迄今为止最连续和高质量的狨猴基因组。大约 90% 的组装基因组以长度超过 1 Mb 的重叠群表示,与之前发表的狨猴基因组相比,连续性提高了约 104 倍。超过98%的先前发表的基因组的空白被成功填补,从而提高了基因组和转录组数据到组装基因组的映射率。
随着最近发布的高质量参考基因组组装,普通狨猴(Callithrix jacchus)已成为生物医学研究中一种有价值的非人灵长类动物模型。两个亚洲灵长类动物研究中心均独立报道了患有癫痫的狨猴。尽管如此,这些灵长类动物中心的群体遗传学和与狨猴癫痫相关的特定遗传变异尚未阐明。在这里,我们利用全基因组测序技术,对来自两个癫痫狨猴谱系的 41 个样本的遗传关系和癫痫风险变异进行了表征。我们从 41 个样本中鉴定了 14 558 184 个单核苷酸多态性(SNP),发现血液样本中的嵌合水平高于指甲样本。基因分析显示,灵长类动物中心的狨猴之间存在四度亲缘关系。此外,SNP 和拷贝数变异 (CNV) 分析表明,含 WW 结构域的氧化还原酶 ( WWOX ) 和酪氨酸蛋白磷酸酶非受体 21 型 ( PTPN21 ) 基因可能与狨猴癫痫有关。值得注意的是,
在本研究中,我们基于从狨猴大脑中收集的局部场电位数据,提出了一种与帕金森病 (PD) 相关大脑区域的新型生物物理计算模型。帕金森病是一种神经退行性疾病,与黑质致密部多巴胺能神经元的死亡有关,而这会影响大脑基底神经节-丘脑-皮质 (BG-TC) 神经回路的正常动态。尽管该疾病有多种潜在机制,但仍然缺乏对这些机制和分子发病机制的完整描述,而且仍然无治愈方法。为了填补这一空白,人们提出了类似于动物模型中发现的神经生物学方面的计算模型。在我们的模型中,我们执行了一种数据驱动的方法,其中使用差分进化优化一组生物约束参数。进化模型成功地模拟了健康和帕金森狨猴脑数据的单神经元平均放电率和局部场电位的光谱特征。就我们而言,这是
磁共振成像(MRI)是神经科学研究和神经系统疾病的临床诊断的众所周知且广泛的成像方式,主要是由于其能够可视化脑微观质量并量化各种代谢物。此外,它的无创性使从体内脑样本与组织学的高分辨率MRI与组织学的相关性有可能,从而支持了神经退行性疾病的研究,例如阿尔茨海默氏病或帕金森氏病。但是,离体MRI的质量和分辨率高度取决于具有最大化填充因子的专业射频线圈的可用性,用于研究样品的不同大小和形状。例如,在超高田中全身MRI扫描仪中并不总是在商业上可用的小型,专用的射频(RF)线圈。即使对于超高场临床前扫描仪,特异性RF线圈的体内MRI也很昂贵,并且并不总是可用。在这里,我们描述了两个RF线圈的设计和构造,基于7T全身扫描仪中人脑组织的螺线管几何形状以及9.4T陶醉师中Marmoset脑样品的离体MRI的体内MRI。我们设计了7T螺线管RF线圈,以最大程度地提高磁带上的人脑样品的填充因子,以进行组织学,而构建了9.4T螺线管以适应50 mL离心管的条件。两个螺线管设计都以收发器模式运行。测得的B 1 +地图显示出感兴趣的成像量的高均匀性,并且与成像量相比,信噪比高。使用9.4T螺线管线圈以60 µm的各向同性分辨率获取了人脑样品的高分辨率(在平面为500 µm切片的厚度为500 µm)。
小鼠胚胎操作………………………………………………………………………………………………………… 7 同类系小鼠的生成…………………………………………………………………………………………………… 7 转基因小鼠的生成………………………………………………………………………………………………………… 7 CRISPR/Cas9 基因组编辑系统……………………………………………………………………………………………… 8 基于 ES 细胞的基因敲除小鼠的生成(悬浮服务)…………………………………………… 8 ES 细胞建立(悬浮服务)………………………………………………………………………………… 8 小鼠净化…………………………………………………………………………………………………………… 8 大鼠净化…………………………………………………………………………………………………………… 8 子宫内电穿孔(悬浮服务)………………………………………………………………………………… 8多克隆抗体生产…………………………………………………………………………………………………… 8 狨猴供应………………………………………………………………………………………………………… 8 常用设施和材料…………………………………………………………………………………………………… 9