2 Quantum information theory with density matrices and quantum channels 2 Trace distance and fidelity of quantum states 纠缠 2 Entanglement, measurement, witness, multipartite entanglement 和三个量子通讯协议 2 Quantum superdense coding; Quantum teleportation; Entanglement swaping 量子纠错
ENGINEERING MATHEMATICS-I Subject Code: BTAG101-22 Matrices: Elementary transformations, rank of a matrix, reduction to normal form, Gauss- Jordon method to find inverse of a matrix, Eigen values and Eigen vectors, Cayley-Hamilton theorem, linear transformation, orthogonal transformations, diagonalisation of matrices, quadratic forms.paq形式,梯形形式,线性方程的解,等级的性质,使用cayley-hamilton定理找到A。差分演算:泰勒和麦克拉林的扩展;不确定形式;曲率,两个或多个自变量的功能,部分分化,均匀函数以及Euler定理,复合函数,总导数,最大值和最小值。整体演算:曲线革命的卷和表面;双重和三个积分,集成顺序的变化,双重积分和三个积分的应用以查找面积和音量。向量计算:向量,标量和向量点函数的区分,向量差异操作员DEL,标量点功能的梯度,矢量函数的差异和卷曲及其物理解释,涉及DEL的身份,二阶差异差异操作员;线,表面和音量积分,Stoke's,Divergence和Green的定理(没有证明)。
3.2.2 对偶向量、内积、范数和希尔伯特空间 ..................................................................................23 3.2.3 正交基 ..................................................................................................................................25 3.2.4 矩阵和伴随矩阵 ..................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 29 3.2.6 完备性关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.10 矩阵内的内积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 42 3.2.17 柯西-施瓦茨不等式..................................................................................................................................................44 3.3 概率论..................................................................................................................................................................................45 3.3.1 随机变量和概率分布..................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 . ...
1.2.1.1 Capsules, hard shell 1.2.1.2 Capsules, soft shell 1.2.1.3 Chewing gums 1.2.1.4 Impregnated matrices 1.2.1.5 Liquids for external use 1.2.1.6 Liquids for internal use 1.2.1.7 Medicinal gases 1.2.1.8 Other solid dosage forms 1.2.1.9 Pressurised preparations 1.2.1.10 Radionuclide generators 1.2.1.11半固体1.2.1.12栓剂1.2.1.13片1.2.1.14透皮贴剂1.2.1.15仪内装置1.2.1.16兽医预示1.2.1.1.17其他
UNIT II SYMMETRIC KEY CRYPTOGRAPHY MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures – Modular arithmetic-Euclid‟s algorithm- Congruence and matrices – Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis – Block cipher design principles - 块密码操作模式 - AES的评估标准 - 高级加密标准 - RC4 - 密钥分布。对称密钥密码学的数学2.2。模块化算术
线性代数是一个简单而优雅的数学框架,是许多科学和工程学科的数学基石。线性代数被广泛定义为对以向量和矩阵表示的线性方程的研究,它为操纵和控制许多物理系统提供了数学工具箱。例如,线性代数是量子力学现象和机器学习算法建模的核心。在线性代数研究的矩阵领域中,酉矩阵因其特殊属性而脱颖而出,即它们保留范数并且易于计算逆。从算法或控制设置解释,酉矩阵用于描述和操纵许多物理系统。与当前工作相关的是,酉矩阵通常在量子力学中被研究,它们可以公式化量子态的时间演化,在人工智能中,它们提供了一种通过保留范数来构建稳定学习算法的方法。在研究酉矩阵时自然会出现一个问题,那就是学习它们有多难。例如,当人们想要了解一个量子系统的动态或将酉变换应用于嵌入到机器学习算法中的数据时,可能会出现这样的问题。在本文中,我研究了在深度学习和量子计算的背景下学习酉矩阵的难度。这项工作旨在提高我们对酉矩阵的一般数学理解,并提供将酉矩阵集成到经典或量子算法中的框架。本文比较了量子和经典领域中参数化酉矩阵的不同形式。一般来说,实验表明,无论考虑哪种参数化,学习任意 𝑑 × 𝑑 酉矩阵都需要学习算法中至少 𝑑 2 个参数。在经典(非量子)设置中,酉矩阵可以通过组合作用于酉流形较小子空间的算子的乘积来构造。在量子设置中,也存在在汉密尔顿设置中参数化酉矩阵的可能性,其中表明重复应用两个交替的汉密尔顿量就足够了
表2。旋转麸质源在声称检测小麦,黑麦,大麦和燕麦的方法的矩阵上旋转。单麸质源的旋转将继续进行六个矩阵,并声称更多的矩阵1 2 3 4 5
1 向量和矩阵基础 3 1.1 向量空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Gram-Schmidt 正交化 . . . . . . . 10 1.5 线性算子和矩阵 . . . . . . . . . . 11 1.5.1 Hermitian 共轭矩阵、Hermitian 矩阵和酉矩阵 . . . . . . . . . . . . 12 1.6 特征值问题 . . . . . . . . . . . . . 13 1.6.1 埃尔米特矩阵和正规矩阵的特征值问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.10 张量积(克罗内克积)。 。 。 。 。 。 。 。 。 。 。 。 。 。 26
3 量子比特和量子门 8 3.1 量子比特 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 埃尔米特共轭 . . . . . . . . . . . . . . . . . . . . . . 9 3.3 酉矩阵和量子门 . . . . . . . . . . . . . . . . 10 3.4 复共轭、埃尔米特共轭、转置和酉性之间的关系 . . . . . . . . . . . . . . 11 3.5 内积 . ... ..................................................................................................................................................................22 3.9 按位内积 .................................................................................................................................................................23
1 向量和矩阵基础 3 1.1 向量空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Gram-Schmidt 正交化 . . . . . . . 10 1.5 线性算子和矩阵 . . . . . . . . . . 11 1.5.1 Hermitian 共轭矩阵、Hermitian 矩阵和酉矩阵 . . . . . . . . . . . . 12 1.6 特征值问题 . . . . . . . . . . . . . 13 1.6.1 埃尔米特矩阵和正规矩阵的特征值问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.10 张量积(克罗内克积)。 。 。 。 。 。 。 。 。 。 。 。 。 。 26