3.2.2 对偶向量、内积、范数和希尔伯特空间 ..................................................................................23 3.2.3 正交基 ..................................................................................................................................25 3.2.4 矩阵和伴随矩阵 ..................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 29 3.2.6 完备性关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.10 矩阵内的内积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 42 3.2.17 柯西-施瓦茨不等式..................................................................................................................................................44 3.3 概率论..................................................................................................................................................................................45 3.3.1 随机变量和概率分布..................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 . ...
主要关键词