摘要:狼疮肾炎(LN)是全身性红斑狼疮(SLE)的严重并发症,被认为是死亡的主要原因之一。SLE的发病机理涉及多种免疫学途径,这使得我们必须加深我们对这种疾病免疫病理复杂性的了解并探索新的治疗靶标。由于氧化还原状态改变会导致免疫系统失调,因此该文档浮动词介绍了氧化应激(OS),氧化DNA损伤,抗氧化剂酶,线粒体功能和线粒体在SLE和LN中的作用。尽管不可否认自适应免疫参与自身免疫的发展,但增加数据强调了先天免疫元素的重要性,尤其是识别核酸配体的Toll样受体(TLR),这些受体(TLR)识别出弱性和自身免疫性疾病。在这里,我们讨论了TLR7和TLR9在开发SLE和LN中的有趣作用。还包括常规治疗的基本特征以及其他一些新颖且较少的替代品,可提供改善LN肾功能的选项。
5'-/rhSeq-r/CAT CTT CCG ATG GCC TTT ATrG GAA A/GT3/-3' 5'-/rhSeq-r/CAT TTC ATC CGT GCT GAG TrGT ACC A/GT4/-3' 5'-/rhSeq-r/CAA ATG GAC GTG TGT AGA GCrC AGA C/GT4/-3' 5'-/rhSeq-r/GGC TCC CGA ATC ATC AArG TCA A/GT4/-3' 5'-/rhSeq-r/ACT AGG TCA AGA AGC ATC AGT rCCC AA/GT2/-3' 5'-/rhSeq-r/TAC ACA AGG AGA ACC ACA GArC TGA C/GT3/-3' 5'-/rhSeq-r/ACA GTG ATT AAT GTC TCTC GCT TTT rCTG/GT1/-3' 5'-/rhSeq-r/AAT CCA CAG TCA AGA TGC ArGA ACA /GT1/-3' 5'-/rhSeq-f/CAG GTC TCA GAA CTG TCC TTrC AGG T/GT1/-3' 5'-/rhSeq-f/TGA ACC AAT CCC TAC CAT CTrC CTT T/GT1/-3'
摘要:CAR-T 细胞疗法涉及通过在 T 细胞表面添加嵌合抗原受体 (CAR) 对 T 细胞进行基因改造,使其识别和攻击肿瘤细胞。在本研究中,我们使用 AAV 血清型 6 (AAV6) 的双重转导将抗 CD19 CAR 整合到人类 T 细胞的已知基因组位置。第一个病毒载体表达 Cas9 内切酶和针对 T 细胞受体 alpha 恒定基因座的向导 RNA (gRNA),而第二个载体携带用于同源介导的 CAR 插入的 DNA 模板。我们评估了三种 gRNA 候选物并确定了它们在产生插入/缺失方面的效率。AAV6 成功地在体外传递了 CRISPR/Cas9 机制,双重转导的分子分析表明 CAR 转基因整合到了所需位置。与通常用于生成 CAR-T 细胞的随机整合方法相比,靶向整合到已知基因组位点可以降低插入诱变的风险,并提供更稳定的 CAR 表达水平。至关重要的是,这种方法还可以敲除内源性 T 细胞受体,从而允许从同种异体供体中提取靶细胞。这带来了令人兴奋的“现成”通用免疫疗法的可能性,这将大大简化 CAR-T 细胞的生产和给药。
摘要:KRAS 是一种经过充分验证的抗癌治疗靶点,其转录下调已被证明对具有异常 KRAS 信号传导的肿瘤细胞具有致命性。G-四链体 (G4) 是一种非典型核酸结构,可介导中心法则事件,例如 DNA 修复、端粒延长、转录和剪接事件。G4 是极具吸引力的药物靶点,因为它们比 B-DNA 更球形,能够实现更具选择性的基因相互作用。此外,它们的基因组普遍性在致癌启动子中增加,它们的形成在人类癌症中增加,并且它们可以通过小分子或靶向核酸进行调节。文献中描述了多种 G4 的推定形成,但对这些结构具有选择性的化合物尚未能够区分主要结构的生物学贡献。利用无细胞筛选技术、新型吲哚喹啉化合物的合成和 KRAS 依赖性癌细胞的细胞模型,我们描述了在 KRAS 启动子 G4 近区和 G4 中区之间进行选择的化合物,将化合物的细胞毒活性与 KRAS 调节相关联,并强调 G4 中区作为进一步靶向努力的先导分子非规范结构。
每种电池技术都具有内在的优势和缺点:例如镍 - 金属氢化物电池提供相对较高的特定能量和功率以及安全性,使它们成为混合动力汽车的首选功能,而水性有机流动电池(AORFB)则具有可持续性和简单的活性材料的简单更换,以及独立的能源和电源,使其对固定的能量存储非常有吸引力。[1]在本演讲中,一种新的电池技术通过使用氧化还原介导的反应融合了上述电池技术,从本质上描述了每种独立技术的主要特征;例如实心材料的高能量密度,易于可回收性和能量和功率的独立可伸缩性(图1A)。[2]为此,Ni(OH)2和MHS限制在AORFB的正和负储层中,该储层采用了苯烷钾的碱性溶液,并混合了2,6-二羟基羟基酮酮和7,8-二羟基苯二醇和7,8-二羟基苯二醇和阳离子的混合物。基于储层的能力达到128 WHL -1的能量密度,留出了足够的改进空间,直至378 WHL的理论极限 -
基因编辑技术的进步。它可以通过识别细菌免疫系统并破坏入侵病原体基因,用于植物防御机制以抵御病原体的攻击。通过 CRISPR/Cas9 整合在植物育种方面的进步有助于开发包括对细菌和病毒疾病的遗传抗性的品种。如果在 F1 代中分离出 Cas9/sgRNA 转基因,未来的作物世代可以获得 CRISPR/Cas9 介导的转基因抗性。Cas9/sgRNA 转基因分离使 CRISPR/Cas9 可安全用于植物育种。尽管 CRISPR/Cas9 已被证明是彻底改变植物育种和开发各种抗病品种的绝佳工具,但它对许多植物生理过程的影响仍有待彻底研究。关键词:CRISPR/Cas9;基因编辑;基因组;植物育种;抗性育种。1. 介绍一个主要的挑战是保护作物品种免受当前病虫害的侵害,并改良作物品种以提高产量。抗病作物品种的短缺是农民遭受农业减产的主要原因。为了培育抗病作物并确保粮食安全,培育抗病、抗虫和高产作物大有裨益 [31]。抗性育种利用包括转基因植物基因组编辑在内的各种尖端分子方法,旨在通过提高作物对病虫害的抵抗力来改良作物。借助转基因技术,育种者可以进行物种间杂交,将来自无关植物和其他生物的基因添加到作物中 [31]。为了满足营养需求,不断增长的人口(由于全球人口增长,预计到 2050 年将达到 98 亿)必须生产过量的食物 [4]。植物病原体包括细菌、病毒、真菌和寄生虫,威胁着全球粮食安全 [2,30]。为了提高作物产量并满足世界粮食需求,提高植物的抗性非常重要 [11]。众所周知,植物和疾病之间总是在不断地相互保护 [16,42]。为了抵御感染,植物进化出了“模板触发免疫 (PTI)”和“效应物触发免疫 (ETI)”[17]。PTI 通常由“病原体相关分子模式 (PAMP)”通过“模式识别受体 (PRR)”快速激活 [32,25]。抗性育种在很大程度上依赖于遗传多样性。利用抗性育种理念的一个重要组成部分是开发抗性并为有害基因增加遗传多样性 [43]。这些发现导致了各种基因编辑方法的使用,以创造遗传变异。CRISPR(成簇的规则间隔回文重复序列)/Cas9(CRISPR 相关蛋白)细菌免疫
长的非编码RNA(LNCRNA)是一类NCRNA,大小超过200个核苷酸,在不同的细胞过程中起多种作用,包括调节许多生物学过程,例如通过抑制蛋白质编码靶基因来调节增殖,侵袭和凋亡(26)。因此,LNCRNA被认为是包括癌症在内的各种疾病中的新型生物标志物和治疗靶标(26)。lncRNA转移相关的肺腺癌转录本(MALAT1)已被证明可以调节IGF-1/ PI3K/ AKT信号传导(28),并与各种癌症类型的恶性转化有关(3)。以前,我们表明了Malat1表达升高是IDH1/2野生型原代GBS总体生存的不利预后因素的重要性(3)。此外,在DM中观察到Malat1的高表达并导致胰岛素抵抗(7)。但是,MALAT1在GB发育中的潜在作用仍需要充分说明。因此,在这项研究中,我们旨在描述GB中MALAT1与DM共存的MALAT1及其对疾病进展的潜在影响。
1新加坡国立大学新加坡国立大学实验海洋生态实验室,新加坡; jovenaseah@u.nus.edu(J.C.L.S. ); dbspat@nus.edu.sg(p.a.t.) 2新加坡新加坡技术大学新加坡环境生命科学工程中心,新加坡637551,新加坡; peiyipeg001@e.ntu.edu.sg(P.P.Y.T. ); ldeignan@ntu.edu.sg(l.k.d. ); diane.mcdougald@uts.edu.au(D.M. ); scott.rice@csiro.au(S.A.R.) 3澳大利亚微生物学研究所,悉尼,悉尼,悉尼,新南威尔士州,2007年,澳大利亚 *通信:jenjennyfong@gmail.com†这些作者为这项工作做出了同样的贡献。 ‡当前地址:澳大利亚河流研究所的沿海和海洋研究中心的格里夫五学院 - 海岸和河口,内森校园,格里夫大学,布里斯班,澳大利亚昆士兰州布里斯班4111。 §当前地址:联邦科学与工业研究组织(CSIRO),农业和食品,一种系统健康的微生物组,堪培拉,堪培拉,澳大利亚第2601号法案。1新加坡国立大学新加坡国立大学实验海洋生态实验室,新加坡; jovenaseah@u.nus.edu(J.C.L.S.); dbspat@nus.edu.sg(p.a.t.)2新加坡新加坡技术大学新加坡环境生命科学工程中心,新加坡637551,新加坡; peiyipeg001@e.ntu.edu.sg(P.P.Y.T.); ldeignan@ntu.edu.sg(l.k.d.); diane.mcdougald@uts.edu.au(D.M.); scott.rice@csiro.au(S.A.R.)3澳大利亚微生物学研究所,悉尼,悉尼,悉尼,新南威尔士州,2007年,澳大利亚 *通信:jenjennyfong@gmail.com†这些作者为这项工作做出了同样的贡献。 ‡当前地址:澳大利亚河流研究所的沿海和海洋研究中心的格里夫五学院 - 海岸和河口,内森校园,格里夫大学,布里斯班,澳大利亚昆士兰州布里斯班4111。 §当前地址:联邦科学与工业研究组织(CSIRO),农业和食品,一种系统健康的微生物组,堪培拉,堪培拉,澳大利亚第2601号法案。3澳大利亚微生物学研究所,悉尼,悉尼,悉尼,新南威尔士州,2007年,澳大利亚 *通信:jenjennyfong@gmail.com†这些作者为这项工作做出了同样的贡献。‡当前地址:澳大利亚河流研究所的沿海和海洋研究中心的格里夫五学院 - 海岸和河口,内森校园,格里夫大学,布里斯班,澳大利亚昆士兰州布里斯班4111。§当前地址:联邦科学与工业研究组织(CSIRO),农业和食品,一种系统健康的微生物组,堪培拉,堪培拉,澳大利亚第2601号法案。
对人工智能介导的同行评审伦理问题的批判性审视 Laurie A. Schintler*,乔治梅森大学 Connie L. McNeely,乔治梅森大学 James Witte,乔治梅森大学 *通讯作者:lschintl@gmu.edu 摘要 人工智能 (AI) 系统的最新进展,包括 ChatGPT 等大型语言模型,为学术同行评审带来了希望和危险。一方面,人工智能可以通过解决出版延迟较长等问题来提高效率。另一方面,它带来了道德和社会问题,可能会损害同行评审过程和结果的完整性。然而,人类同行评审系统也充满了相关问题,例如偏见、滥用和缺乏透明度,这些问题已经降低了可信度。虽然人们越来越关注人工智能在同行评审中的应用,但讨论主要围绕学术期刊出版中的剽窃和作者身份展开,忽视了同行评审所处的更广泛的认识论、社会、文化和社会认识论。人工智能驱动的同行评审的合法性取决于与科学精神的一致性,包括定义学术界适当行为的道德和认知规范。在这方面,存在一个“规范-反规范连续体”,其中人工智能在同行评审中的可接受性由制度逻辑、道德实践和内部监管机制决定。这里的讨论强调需要批判性地评估人工智能驱动的同行评审的合法性,解决相对于影响其实施和影响的更广泛的认知、社会、伦理和监管因素的利弊。关键词:人工智能、ChatGPT、同行评审、伦理、科学精神 1. 简介 科学是社会知识的中心,因此,它本质上是一种社会制度结构。从这个意义上说,科学传播中的知识治理和评估是一项基本的社会活动,主要由学术同行评审的过程定义(Polanyi,1962 年)。在过去的半个世纪里,学术同行评审经历了一场涉及计算机和互联网等信息技术的数字化转型(Vicente-Saez 等人,2021 年)。现在,人工智能(AI)——指的是通过计算公式、规则和逻辑“能够通过展示智能、类似人类的行为来执行任务”的技术系统(Russell & Norvig,2021 年)——正在被整合到相关活动中,以增强和自动化各种决策,从选择审稿人到淘汰被判定为低质量或欺诈的研究(Heaven,2018 年;Jana,2019 年;Checco 等人,2021 年)。自然语言处理器(NLP)、大型语言模型(LLM)和其他生成式人工智能技术(例如 ChatGPT 1)的最新突破可能会进一步颠覆同行评审系统,不仅带来了新的前景,也带来了前所未有的担忧和挑战(van Dis 等人,2023 年)。在
摘要 影响全球柑橘产业的最具破坏性的疾病是黄龙病 (HLB),其病原体是 Candidatus Liberibacter asiaticus。HLB 主要通过昆虫媒介柑橘木虱 (Diaphorina citri) 传播。为了阻止柑橘木虱引起的 HLB 的快速传播,人们采用了传统的媒介控制策略,例如喷洒杀虫剂、释放天敌和大量引入天然寄生蜂。然而,仅靠这些方法无法遏制疾病的传播。为了通过对柑橘木虱基因组进行特定改造来进一步扩展可用于控制柑橘木虱的工具,我们开发了基于 CRISPR-Cas9 的基因改造协议。到目前为止,由于柑橘木虱卵通常很脆弱且体积很大,因此对柑橘木虱进行基因组编辑一直是一项挑战。本文介绍了收集和准备卵子以将 Cas9 核糖核蛋白 (RNP) 引入早期胚胎的优化方法,以及将 RNP 注射到成年雌性血腔中进行卵巢转导的替代方法。利用这些方法,我们产生了可见的体细胞突变,表明它们适合在 D. citri 中进行基因编辑。这些方法代表了推进 D. citri 研究的第一步,为未来基于基因的控制 HLB 的系统做准备。