我们报告了一个进行性多系统混合组织细胞增多症患者的病例,将兰格汉细胞组织细胞增多症(LCH)和Erdheim-Chester疾病(ECD)与骨髓相关联,其病变涉及MAP2K1 E102-I102-I103DEL。在MEK抑制剂Trametinib下进行初步改进后,治疗仅是有效的且耐受性不佳的。最终,尽管稳定状态下的曲米替尼的槽血液水平在预期的范围内,但这种疾病逐渐危及生命的情况,伴有脑部参与和anasarca。切换到MEK抑制剂联合替尼作为打捞疗法会导致剧烈的,快速的疾病反应,并且患者在3年后的治疗中保持无病。外周血中MAP2K1缺失的负荷与疾病活性相关,并与cobi-Metinib相关,尽管在最后一次随访中仍然可以检测到。
简介:在皮肤,胰腺,肺和结肠中晚期实体瘤的患者中,RAS或RAF中的激活突变是常见的致癌事件。这些患者的治疗选择有限。在打捞环境中,NRAS突变转移性黑色素瘤中的中位总生存期不到一年。MEK位于Ras和Raf的下游,但ERK上游是一个有吸引力的目标,可以抵抗高架MAPK信号传导。虽然MEK抑制剂具有选择性,但FDA注册的MEK抑制剂对RAS突变肿瘤的途径重新激活敏感。这种机械限制促使慢性途径抑制策略有助于限制临床实用性的靶向类别效应的毒性。因此,我们为MEK抑制开发了一种新方法。IMM-1-104是一种新型的变构双MEK抑制剂,可破坏MEK及其下游靶向ERK的磷酸化,并具有短血浆药物半寿命,可通过接近零药槽进行深层循环抑制。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
靶向治疗和免疫治疗的现代进步显著改善了晚期黑色素瘤的生存结果;然而,仍然需要新的方法来克服疾病进展和治疗耐药性。近年来,PARPi 疗法作为单一方案和与其他黑色素瘤疗法联合使用都显示出巨大的前景。在这里,我们描述了三例独特的 BRAF V600 突变晚期黑色素瘤病例,这些黑色素瘤在靶向 BRAF/MEK 药物治疗后进展,随后对组合 PARPi 和 BRAF/MEK 抑制剂表现出部分或接近完全的反应。这凸显了这种组合方法的潜在协同作用及其作为对靶向和/或免疫疗法有抵抗力的晚期黑色素瘤患者的治疗选择的疗效。需要进行前瞻性临床试验,在更大的黑色素瘤队列中探索这种协同作用,以研究这种组合治疗难治性晚期黑色素瘤。
幼年型粒单核细胞白血病 (JMML) 是一种罕见的儿童骨髓增生性肿瘤。JMML 的分子特征是 Ras/MAPK 通路过度活跃,最常见的原因是编码蛋白酪氨酸磷酸酶 SHP2 的基因 PTPN11 发生突变。目前治疗 JMML 的策略包括使用低甲基化剂 5-阿扎胞苷 (5-Aza) 或 MEK 抑制剂曲美替尼和 PD0325901 (PD-901),但这些药物均不能作为单一疗法治愈。利用 Shp2 E76K/ + 小鼠 JMML 模型,我们表明 5-Aza 和 PD-901 的组合可调节 JMML 患者中常见的几种血液学异常,部分原因是通过减少白血病造血干细胞和祖细胞 (HSC/Ps) 的负担。接受药物治疗的小鼠中 JMML 特征的减少与接受 5-Aza 和 PD-901 联合治疗的 Shp2 E76K/+ 小鼠中 p-MEK 和 p-ERK 水平的降低有关。RNA 测序分析显示几种 RAS 和 MAPK 信号相关基因减少。此外,在接受两种药物联合治疗的 Shp2 E76K/+ 小鼠中还观察到与炎症和髓系白血病相关的基因表达减少。最后,我们报告了两例接受 5-Aza、曲美替尼和化疗治疗的 JMML 和 PTPN11 突变患者,他们因联合治疗而出现临床反应。
转移性结直肠癌(MCRC)是美国癌症死亡的第二大原因。超过50%的致癌驱动器RAS(KRAS或NRA)的MCRC港口突变患者。由于直接瞄准RA的大多数突变是技术上具有挑战性的,因此研究人员专注于目标MEK,这是RAS的下游介质。但是,将MEK作为单药治疗的目标是MCRC患者无效。我们假设将MEK抑制剂与其他药物相结合可以增强MEK靶向MCRC的疗效。无偏见的高通量筛选(HTS)被形成,以识别提高MEK抑制剂功效的药物。使用MEK抑制剂Trametinib用KRAS突变的CRC细胞作为“骨链”,并在美国食品药品监督管理局批准或在临床试验中批准了两个“临床准备就绪”化合物文库。hts表明,SRC抑制剂dasatinib和Trametinib的组合在体外CRC细胞中是协同的(MTT和菌落形成测定)。使用荧光激活的细胞分选,逆相蛋白阵列或蛋白质印迹分析细胞增殖和凋亡的标志物,与多个CRC细胞系中的单个药物相比,当靶向SRC和MEK时,靶向SRC和MEK时,细胞增殖降低和细胞死亡增加。然而,与单独的曲敏替尼相比,与人类使用的剂量相当于人类剂量的小鼠的剂量和剂量的剂量相结合的小鼠抗肿瘤活性,将剂量显着增强了抗肿瘤活性。这些结果强调了使用临床相关剂量作为将体外发现转化为诊所的先决条件进行仔细的临床前验证研究的重要性。
目的:葡萄膜黑色素瘤 (UM) 是成人中最常见的眼癌。即使成功治疗原发性病变,约 50% 的 UM 患者也会在肝脏中发展为转移性 UM (mUM)。mUM 对目前的化疗和免疫疗法具有耐药性,大多数 mUM 患者在一年内死亡。UM 的特征是 GNAQ/GNA11 中的功能获得性突变,编码 G α q 蛋白。我们最近发现,G α q 致癌信号传导回路涉及一种非典型通路,不同于经典的 PLC β 和 MEK-ERK 激活。GNAQ 通过粘着斑激酶 (FAK) 促进关键致癌驱动因子 YAP1 的激活,从而将 FAK 确定为 GNAQ 下游的可用药信号传导中心。然而,靶向疗法通常会激活补偿性耐药机制,导致癌症复发和治疗失败。
目的:葡萄膜黑色素瘤 (UM) 是成人中最常见的眼癌。即使成功治疗原发性病变,约 50% 的 UM 患者也会在肝脏中发展为转移性 UM (mUM)。mUM 对目前的化疗和免疫疗法具有耐药性,大多数 mUM 患者在一年内死亡。UM 的特征是 GNAQ/GNA11 中的功能获得性突变,编码 G α q 蛋白。我们最近发现,G α q 致癌信号传导回路涉及一种非典型通路,不同于经典的 PLC β 和 MEK-ERK 激活。GNAQ 通过粘着斑激酶 (FAK) 促进关键致癌驱动因子 YAP1 的激活,从而将 FAK 确定为 GNAQ 下游的可用药信号传导中心。然而,靶向疗法通常会激活补偿性耐药机制,导致癌症复发和治疗失败。
lifirafenib和mirdametinib在具有多种KRAS突变的癌细胞系中表现出具有统计学意义的协同抑制作用。使用8×8剂量基质在22个KRAS突变癌细胞系中评估了Lifirafenib和Mirdametinib的协同作用,并具有发光细胞活力测定能力读数。对于每种剂量组合,使用具有最高单药物无效模型的生化直觉的概括性LOEWE方法来评估两种药物之间的协同作用。p值<0.05被评分为具有统计学意义的协同作用,而22个细胞系中有14个达到了该阈值。在具有各种KRAS突变等位基因的细胞系中观察到了统计学上显着的协同活性,包括G12C,G12V,G13D,Q61R和Q61K。示例细胞系如上所述。
尽管甲状腺癌 (TC) 的总体预后良好,但低分化癌 (PDTC) 和间变性癌 (ATC,最致命的人类恶性肿瘤之一) 代表着重大的临床挑战。我们已经证明,活性 T172 磷酸化 CDK4 的存在预示着对 CDK4/6 抑制药物 (CDK4/6i) 包括 palbociclib 的敏感性。这里,在所有分化良好的 TC (n=29)、19/20 PDTC、16/23 ATC 和 18/21 TC 细胞系(包括 11 个 ATC 衍生的细胞系)中检测到了 CDK4 磷酸化。缺乏 CDK4 磷酸化的细胞系对 CDK4/6i 不敏感。RNA 测序和免疫组织化学显示,没有磷酸化 CDK4 的肿瘤和细胞系呈现出非常高的 p16 CDKN2A 水平,这与增殖活性有关。在这 7 个肿瘤中,有 5 个未发现 RB1 突变。p16/KI67 免疫组织化学和先前开发的 11 基因特征识别出可能不敏感的肿瘤,这些肿瘤缺乏 CDK4 磷酸化。在细胞系中,哌柏西利与达拉非尼/曲美替尼协同作用,完全且不可逆地抑制了增殖。联合用药可预防哌柏西利诱导的耐药机制,最显著的是 Cyclin E1-CDK2 激活和磷酸化 CDK4 复合物的矛盾稳定。我们的研究支持评估 CDK4/6i 用于 ATC/PDTC 治疗,包括与 MEK/BRAF 抑制剂联合使用。