弗吉尼亚22901 L. c。戴维斯(307),科学研究实验室,福特汽车公司,迪尔伯恩,密歇根州48121 R. M。Feenstra(95),IBM研究部,T。J。Watson Research Center,Yorktown Heights,NY10598μ。 h。 hecht(307),太空微电子技术中心,加利福尼亚州帕萨迪纳,加利福尼亚理工学院喷气推进实验室,加利福尼亚州91109 Harald f。 HESS(427),AT&T Bell Laboratories,Murray Hill,NJ 07974 W。 J. Kaiser(307),太空微电子技术中心,加利福尼亚州帕萨迪纳,加利福尼亚理工学院喷气推进实验室,加利福尼亚州91109 Young Kuk(277),首尔国立大学,韩国首尔,Feenstra(95),IBM研究部,T。J。Watson Research Center,Yorktown Heights,NY10598μ。h。hecht(307),太空微电子技术中心,加利福尼亚州帕萨迪纳,加利福尼亚理工学院喷气推进实验室,加利福尼亚州91109 Harald f。HESS(427),AT&T Bell Laboratories,Murray Hill,NJ 07974 W。 J. Kaiser(307),太空微电子技术中心,加利福尼亚州帕萨迪纳,加利福尼亚理工学院喷气推进实验室,加利福尼亚州91109 Young Kuk(277),首尔国立大学,韩国首尔,HESS(427),AT&T Bell Laboratories,Murray Hill,NJ 07974 W。J. Kaiser(307),太空微电子技术中心,加利福尼亚州帕萨迪纳,加利福尼亚理工学院喷气推进实验室,加利福尼亚州91109 Young Kuk(277),首尔国立大学,韩国首尔,
封面图片。上图:Thy1-GFP 标记的透明化鼠脑(CLARITY)。采用 ZEISS Lightsheet Z.1 采集,在 arivis Vision4D 中处理。使用 5 倍物镜成像,使用来自两侧的 6x7 瓷砖。插图:皮质区域的数字变焦,显示可以识别和分析单个神经元。图片由 Douglas S Richardson 拍摄;经 ZEISS 许可复制。中间左侧:有丝分裂中的 HeLa 细胞的 3D 渲染。来自 300 个时间点图像系列的快照。染色体标记为绿色(mCherry-H2B),线粒体标记为黄色(mitotracker - 深红色),内质网标记为洋红色(mEmerald-calnexin)。细胞器结构清晰可见。由 Wesley Legant 和 Eric Betzig 使用晶格光片显微镜采集。图片来自 Chen 等人Science 2014;346:1257998。经美国科学促进会许可转载。中间右侧:海洋甲壳类动物 Parhyale hawaiensis 六天大胚胎的 3D 渲染体积数据集。七天延时拍摄的一个时间点。使用 ZEISS Lightsheet Z.1 采集,数据在斐济处理和融合。图像由 Tassos Pavlopoulos 拍摄。底部:斑马鱼视网膜的发育过程,在出生后 1.5 天至 3.5 天内,每 12 小时在光片显微镜下拍摄一次。标签:视网膜神经节细胞与 Ath5:RFP(洋红色),无长突细胞和水平细胞与 Ptf1a:YFP(黄色),光感受器和双极细胞与 Crx:CFP(青色)。图片由德累斯顿马克斯普朗克分子细胞生物学和遗传学研究所(MPI-CBG)的 Norden 实验室提供(根据知识共享署名 - 相同方式共享 4.0 国际许可证授权 https://creativecommons.org/licenses/by-sa/4.0/deed.en)。
1。F. Bray等。,2018年全球癌症统计:Globocan在185个国家 /地区的36个癌症全球发病率和死亡率的估计。 CA:临床医生68,394-424(2018)的癌症杂志。 2。 E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。,2018年全球癌症统计:Globocan在185个国家 /地区的36个癌症全球发病率和死亡率的估计。CA:临床医生68,394-424(2018)的癌症杂志。 2。 E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。CA:临床医生68,394-424(2018)的癌症杂志。2。E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。E. Francini等。,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。前列腺癌和前列腺疾病22,420-427(2019)。3。M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。M. de Santis等。,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。治疗的进步(2024)。4。S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。S. T. Tagawa等。,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。5。D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。癌症82,2256-2261(1998)。6。D. A.Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。7。O. Sartor等。8。9。临床癌症研究:美国癌症研究协会官方杂志3,81-85(1997)。,lutetium-177-PSMA-617,用于转移性cast割前列腺癌。新英格兰医学杂志385,1091-1103(2021)。M. S. Hofman等。 ,[(177)lu-psma-617与Cabazitaxel在转移性cast割的前列腺癌(治疗)患者中:一项随机,开放标签,第2期试验。 柳叶刀(英国伦敦)397,797-804(2021)。 J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。 模式识别35,1989-1996(2002)。 10。 V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。 国际计算机视觉杂志22,61-79(1997)。 11。 F. Meyer,地形距离和分水岭。 信号处理38,113-125(1994)。M. S. Hofman等。,[(177)lu-psma-617与Cabazitaxel在转移性cast割的前列腺癌(治疗)患者中:一项随机,开放标签,第2期试验。柳叶刀(英国伦敦)397,797-804(2021)。J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。 模式识别35,1989-1996(2002)。 10。 V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。 国际计算机视觉杂志22,61-79(1997)。 11。 F. Meyer,地形距离和分水岭。 信号处理38,113-125(1994)。J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。模式识别35,1989-1996(2002)。10。V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。国际计算机视觉杂志22,61-79(1997)。11。F. Meyer,地形距离和分水岭。信号处理38,113-125(1994)。
摘要 R 环杂交和电子显微镜已用于测定克隆基因的细胞 RNA 浓度。在质粒 DNA 序列过量的情况下,所有互补 RNA 都被驱动到可通过电子显微镜分析的 R 环结构中。为测定特定 poly(A)+ RNA 的浓度,将质粒 DNA 每 2000-5000 个碱基对与三氧沙林和紫外线交联一次,以 DNA 序列过量的方式与各种已知量的总 poly(A)+ RNA 杂交,并通过用乙二醛处理来稳定 R 环。如有必要,可使用 Sepharose 2B 色谱法去除多余的未杂交 RNA,从而能够可视化较少的转录本。重建实验表明,通过电子显微镜测定含有特定 RNA 环的质粒 DNA 分子的比例可以给出总 poly(A)+ RNA 群体中特定 RNA 重量比例或浓度的准确值。这些方法还用于测定 TRT3 上与序列互补的五种 RNA 物种的浓度,TRT3 是一种重组 DNA 质粒,含有酵母组蛋白 2A 和 2B 基因以及另外三种非组蛋白基因。所描述的方法允许人们可视化丰富和非丰富转录本的 R 环结构,并通过确定含有 R 环的 DNA 分数来估计这些 RNA 物种的浓度。
光场显微镜 (LFM) 是对活体动物脑内神经元活动进行光学成像的关键技术。然而,目前还没有能够提供统一模拟和优化过程的计算框架。本文提出并展示了一种用于 LFM 系统的计算模拟和优化框架。所提出的框架由三个主要模块组成:前向模型、后向模型和优化器。本文全面介绍了每个模块背后的理论背景和实现细节。所开发的计算框架的期望是让非计算方面的用户仍然可以快速原型化并进一步优化他们的 LFM 光学设计和重建模型。此外,本文还对当前 LFM 系统的分类、微透镜阵列优化方法以及基于模型可微性的优化流程做出了贡献。
引言实时细胞显微镜几十年来可以访问,这是从50年前用16毫米胶片拍摄的中性粒细胞来捕捉细菌的电影(David Rogers,Vanderbilt University,http://www.biochemw.biochemw.org.org.org/neutrophil.shtml)。现在,该技术跨越了生命科学的所有领域,也扩展到了物理科学。近年来,技术进步,包括传感器灵敏度,计算能力,更明亮,更稳定的荧光蛋白(FPS)以及用于细胞隔室的新荧光探针,为研究人员提供了大量详细研究复杂生物学过程的工具(Goldman和Spector,2005年)。但是,需要在优化各种显微镜平台的图像采集条件方面的专业知识,以利用活细胞显微镜提供的全部潜力。与任何测量设备一样,最好通过优化系统来最大程度地减少任何扰动,以使其最小化。作为其正常生命周期的一部分,大多数组织和细胞永远不会暴露于光线,众所周知,紫外线(UV)光损害DNA,聚焦红外(IR)光会导致局部加热,荧光激发会导致对组织和细胞的光毒性(Pattison和Davies和Davies,2006年)。活细胞中光毒性的主要原因是自由基物种的氧依赖性反应,这些反应是在激发荧光蛋白或染料分子和周围细胞成分的激发期间产生的。还需要使用低浓度的荧光探针来避免对感兴趣的生物学过程引起非特异性变化。因此,对于实时成像,最好通过优化通过显微镜的光路路径的效率以及使用优化的检测器来检测大多数荧光发射的检测器来降低激发光的量。
参考文献 i https://en.wikipedia.org/wiki/Atomic_force_microscopy(最后访问时间:20/04/20) ii Giessibl, FJ (2003)。原子力显微镜的发展。现代物理评论,75 (3),949。 iii Binnig, G.、Quate, CF 和 Gerber, C. (1986)。原子力显微镜。物理评论快报,56(9),930。 iv Morita, S.、Giessibl, FJ、Meyer, E. 和 Wiesendanger, R. (Eds.)。(2015)。非接触式原子力显微镜(第 3 卷)。Springer。 v http://web.physik.uni-rostock.de/cluster/students/fp3/AFM_E.pdf(上次访问时间:30/04/20) vi https://myscope.training/legacy/spm/background/(上次访问时间:20/04/20) vii Hansma, HG (1996). 生物分子的原子力显微镜。真空科学与技术杂志 B:微电子和纳米结构处理、测量和现象,14(2),1390-1394。 viii Filleter, T. 和 Bennewitz, R. (2010). 通过原子力显微镜研究 SiC (0001) 上石墨烯薄膜的结构和摩擦特性。物理评论 B,81(15),155412。
1 ,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国
光显微镜是生活和物质科学中使用最广泛的设备,可以研究光与物质的相互作用,比肉眼更好。常规显微镜将反射或传输光强度的空间差异从对象转移到数字图像中的像素亮度差异。然而,相显微镜将光相位的空间差异从对象或通过对象转换为像素亮度的差异。干扰显微镜是一种基于阶段的方法,已经在各种学科中发现了应用。虽然干涉测量结果带来了纳米轴向分辨率,但定量相显微镜(QPM)中的横向分辨率仍然受衍射的限制,类似于其他传统显微镜系统。提高分辨率一直是自从显微镜在第17届