引言实时细胞显微镜几十年来可以访问,这是从50年前用16毫米胶片拍摄的中性粒细胞来捕捉细菌的电影(David Rogers,Vanderbilt University,http://www.biochemw.biochemw.org.org.org/neutrophil.shtml)。现在,该技术跨越了生命科学的所有领域,也扩展到了物理科学。近年来,技术进步,包括传感器灵敏度,计算能力,更明亮,更稳定的荧光蛋白(FPS)以及用于细胞隔室的新荧光探针,为研究人员提供了大量详细研究复杂生物学过程的工具(Goldman和Spector,2005年)。但是,需要在优化各种显微镜平台的图像采集条件方面的专业知识,以利用活细胞显微镜提供的全部潜力。与任何测量设备一样,最好通过优化系统来最大程度地减少任何扰动,以使其最小化。作为其正常生命周期的一部分,大多数组织和细胞永远不会暴露于光线,众所周知,紫外线(UV)光损害DNA,聚焦红外(IR)光会导致局部加热,荧光激发会导致对组织和细胞的光毒性(Pattison和Davies和Davies,2006年)。活细胞中光毒性的主要原因是自由基物种的氧依赖性反应,这些反应是在激发荧光蛋白或染料分子和周围细胞成分的激发期间产生的。还需要使用低浓度的荧光探针来避免对感兴趣的生物学过程引起非特异性变化。因此,对于实时成像,最好通过优化通过显微镜的光路路径的效率以及使用优化的检测器来检测大多数荧光发射的检测器来降低激发光的量。
主要关键词