低噪声放大器 5 低相位噪声放大器 5 宽带分布式放大器 5 线性放大器和功率放大器 5 GaN 功率放大器 5 数字步进衰减器 5 I/Q 下变频器/接收器 5 I/Q 上变频器/下变频器/收发器 6 集成 LO 的 I/Q 解调器 6 V 波段发射器/接收器 6 集成 VCO 的整数 N PLL 6 模拟可调低通/带通滤波器 6 数字可调滤波器 6 SPDT 开关 7 SP3T、SP4T、SP6T、SP8T 开关 7 波束形成器 7 高速模数转换器 >20 MSPS 7 高速数模转换器 ≥30 MSPS 7 时钟发生器和同步器 7 5G 毫米波网络无线电解决方案和大规模 MIMO 解决方案7 业界最完整的24 GHz 至 29.5 GHz MMW 5G 网络无线解决方案 8 业界最完整的37 GHz 至 43.5 GHz MMW 5G 网络无线解决方案 9 大规模 MIMO (M-MIMO):5G 速度竞赛的快车道 10
摘要:精确度量在电子设备中起着至关重要的作用,特别是在使用BICMOS技术的设备中嵌入THZ应用中的硅具有异质结(HBT)的表征。由于最近在纳米范围内制造技术的创新,能够在亚毫升波区域运行的设备成为现实,并且必须满足对高频电路和系统的需求。将精确的模型达到此类频率,不再有可能限制参数以下的提取低于110 GHz,并且必须研究允许获得被动和主动设备的可终止测量的新技术。在本论文中,我们将研究不同无源测试结构的硅(磁力)上S参数的特征,而B55技术中的HBT SIGE从Stmicroelectronics(最高500 GHz)进行了SIGE的表征。我们将首先引入通常用于此类分析的测量设备,然后我们将转到IMS实验室中采用的各种测量台,最后我们将重点介绍校准和剥离技术(DE-DEMEDDIQUS(DE-EXED),通过审查高频率特征和两种效率上的校准劳ith钙的主要批评,以进行校准和剥离技术。 TRL)到WR-2.2条。在完成时,我们将提出一些测试结构,以评估对Miller Wave测量和新输电线设计解决方案的不良影响。将提出两个为IMS的磁力表征的光质产生的循环:我们将介绍一个新设计的浮球层设计,并评估其限制寄生效应以及其环境效果(底物,邻近的结构和diaphony)的能力。为了进行分析,我们将依靠紧凑型模型 +探针的电磁模拟和混合EM模拟,包括用于评估测量结果的探针模型,更接近实际条件。将仔细研究两个有希望的设计:“布局M3”,旨在以单个级别的校准表征DUT,而“曲折线”,通过避免在硅的测量过程中避免任何运动,从而保持两个恒定探测器之间的距离。关键字:表征,传输线,Terahertz,毫米波,校准,silicuim,tbh坐着
在日本,ALMA始于20世纪80年代初科学界自下而上的讨论:1983年提出了大型毫米波阵列(LMA)的设想。1987年,LMA的设想演变为大型毫米波和亚毫米波阵列(LMSA),并考虑了亚毫米波的观测。2001年,NAOJ、NSF和ESO签署决议,成立了ALMA。2004年,NAOJ正式加入ALMA建设,同年“阿塔卡马大型毫米波/亚毫米波阵列(ALMA)”得名。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
摘要:具有高通道数、覆盖面积达平方厘米及更大的浮动神经传感器阵列将为神经工程和脑机接口带来变革。由于需要将传感、计算、通信和电源功能整合到一个边长约为 100 μ m 的封装中,因此在每个神经传感器的尺寸限制内满足电源和无线数据通信要求一直难以实现。在这项工作中,我们展示了一种用于神经记录系统的近红外光功率和数据通信链路,该系统满足实现密集阵列的尺寸要求和防止组织发热的功率要求。光学链路是使用由串联光伏电池和微尺度发光二极管组成的集成光电装置来演示的。使用自供电 CMOS 集成电路和单光子雪崩光电二极管之间的预记录神经信号来演示系统限制内无线神经链路的端到端功能。关键词:光电器件、光伏、发光二极管、无线传感器、神经工程
抽象的靶向温度管理(TTM)是一种新兴的临床技术,旨在调节32°C – 34°C范围内的心脏骤停患者体温。这种精确的温度控制旨在减少脑氧代谢,从而稳定这些患者的疾病状况。在19009年大流行的背景下,非接触式医疗保健和自动化系统的重要性显着增长。这项研究利用了一种非侵入性方法来收集患者的全面生理数据,从而为其整体健康状况提供了宝贵的见解。除了开发用于评估TTM有效性的预测模型外,这项研究还严格评估了毫米波技术的数据收集能力,从而阐明了其对现代医疗保健的潜在贡献。关键字:目标温度管理,毫米波技术,机器学习,心脏骤停。
关于课程 微波覆盖了电磁波频谱的一个重要窗口(~ 300MHz 到 ~ 300GHz)。自从几十年前它出现在国防部门、材料加工、光谱学、通信等领域以来,它在相关技术的各个方面都得到了迅速发展,包括源、放大器、耦合器、天线、探测器等。这些进步使得紧凑型有源和无源微波/毫米波设备被部署在从空间通信系统到个人手机等各种环境中!创建新设计、模拟性能、制造设备和测试是需要解决的挑战。本课程的目的是介绍电磁理论的基础知识以及毫米波和太赫兹技术在国防、通信、工业和科学应用等方面的最新进展。此外,还将向各技术机构的年轻教职员工介绍/毫米波和太赫兹高功率源和放大器(包括天线、超表面、频率选择表面、光子带隙结构等)的建模问题。
摘要 近年来,无线传感引起了人们的极大兴趣,即利用无线信号代替传统传感器进行传感。非接触式无线传感已经使用各种射频信号(如 WiFi、RFID、LoRa 和 mmWave)成功实现,从而实现了大范围的应用。然而,受限于硬件热噪声,射频传感的粒度仍然相对较粗。在本文中,我们提出了第一个量子无线传感系统,该系统不使用宏观信号功率/相位进行感测,而是使用原子的微观能级进行感测,将感测粒度提高了一个数量级。所提出的量子无线传感系统能够利用宽频谱(例如 2.4 GHz、5 GHz 和 28 GHz)进行感测。我们用两种广泛使用的信号(即 WiFi 和 28 GHz 毫米波)展示了量子无线传感的卓越性能。我们表明量子无线传感可以将WiFi的感知粒度从毫米级推进到亚毫米级,将毫米波的感知粒度推进到微米级。
注:1. 尺寸和公差符合 ASME Y14.5M, 1994 标准。2. 所有尺寸以毫米为单位(角度以度为单位)。3. 尺寸 D1 和 E1 不包括模具飞边突起或浇口毛刺。