彭拜博士,中国欣德华大学开发下一代电池;探测微型电极至纳米级的原位电化学动力学;捕获晚期电极的异质性和随机性;通过基于物理学的数学建模和仿真来确定材料,电极和电池合理设计的理论途径和边界
摘要:报道了一种采用临时键合技术制备的微型压阻式压力传感器。在SOI(Silicon-On-Insulator)晶片的器件层上形成传感膜,将传感膜与硼硅酸盐玻璃(Borofloat 33,BF33)晶片键合支撑,经硼掺杂和电极图形化后通过Cu-Cu键合剥离。将处理层减薄、刻蚀后键合到另一片BF33晶片上。最后采用化学机械抛光(CMP)减薄衬底BF33晶片,降低器件总厚度。切割后用酸溶液去除铜临时键合层,剥离传感膜。制备的压力传感器芯片面积为1600 µ m×650 µ m×104 µ m,传感膜尺寸为100 µ m×100 µ m×2 µ m。在0~180 kPa范围内获得了较高的灵敏度36 µ V / (V · kPa)。通过进一步减小宽度,所制备的微型压力传感器可以轻松安装在医疗导管中用于血压测量。
I。在世界各地的研究劳动力中,重量少于100克的引言H和大小的DNA测序仪正在越来越多地使用。尽管这些微型测序仪的读取更长的DNA链的能力而被重视的虽然不如其大型和建立的对应物。 他们的低成本和便携性也是珍贵的优势。 一个框图传达现代微型DNA测序系统的主要部分如图所示 1。 如图所示,在设备的印刷电路板(PCB)上有四个主要芯片:i)传感器阵列将DNA分子转换为电子电流等效物; ii)一个混合信号应用特异性集成电路(ASIC),能够放大,过滤和数字化感应的电子电流; iii)一个轨道可编程的门阵列(FPGA),以控制,缓冲和组织从ASIC出现的采样信号; iv)一种通用的总线(USB)芯片,该芯片在板外传达收集的DNA测量结果[1]。 当前对此类系统的挑战是,现有的微型测序仪目前不包含任何实质性嵌入式计算,因此,对通过底盘的测量值进行了任何生物信息分析。 1显示,对于有关DNA等效电流的任何相关分析,必须将数据发送到某些外部处理资源(例如台式机,笔记本电脑,云等)。虽然不如其大型和建立的对应物。他们的低成本和便携性也是珍贵的优势。一个框图传达现代微型DNA测序系统的主要部分如图1。如图所示,在设备的印刷电路板(PCB)上有四个主要芯片:i)传感器阵列将DNA分子转换为电子电流等效物; ii)一个混合信号应用特异性集成电路(ASIC),能够放大,过滤和数字化感应的电子电流; iii)一个轨道可编程的门阵列(FPGA),以控制,缓冲和组织从ASIC出现的采样信号; iv)一种通用的总线(USB)芯片,该芯片在板外传达收集的DNA测量结果[1]。当前对此类系统的挑战是,现有的微型测序仪目前不包含任何实质性嵌入式计算,因此,对通过底盘的测量值进行了任何生物信息分析。1显示,对于有关DNA等效电流的任何相关分析,必须将数据发送到某些外部处理资源(例如台式机,笔记本电脑,云等)。尽管这种情况并不是在设备齐全的科学实验室进行的研究的主要障碍,但它导致了领域工作的并发症(例如,流行病学研究),可以不存在无线通信
麦克风根据MEMS技术制造,由于其微型尺寸,由于温度变化而导致低能消耗,因此发现了新的应用(微电动机械系统)。在物联网技术传播之后,微型高效MEMS麦克风对医疗设备的需求增加了[1]。对人体特征的持续监测al-lows在早期阶段检测健康问题并找到及时的医疗治疗。例如,第[2]介绍了血压与第二心脏声音S2之间相关性的研究结果。可以通过测量音调心脏的声音来检查血压。但是,大多数MEMS微型型可以彻底处理声频范围(20-20000 Hz)。此外,血压脉冲频率构成1.5–2.1 Hz [3]。因此,开发可具有1到20 Hz的适当电特性的低频MEMS麦克风已成为一项关键任务。
用于干燥或润滑空气的通用阀门 。...............................中性气体和液体 7 ..............................微型阀(2 通直动式)37 ........。。。。。。。。。。。。。。。。。。。。。。。。水和中性液体用阀门 45 ...............................防水锤阀 63 ..............................热水-蒸汽阀 71 ........。。。。。。。。。。...............液压油和中性液体阀门(最大100 bar)85 .........。。。。。。。。。。。。。。。。。。。。。。。高耐腐蚀阀门(不锈钢) 95
新闻稿 新加坡,2024 年 10 月 24 日 新加坡南洋理工大学科学家开发出由磁场控制的米粒大小的软体机器人,用于靶向药物输送 新加坡南洋理工大学 (NTU Singapore) 的一组科学家开发出了米粒大小的软体机器人,可以利用磁场控制来实现靶向药物输送,为未来可能改进的治疗方法铺平了道路。 这种新型软体机器人由南洋理工大学机械与航空航天工程学院 (MAE) 的工程师开发,发表在科学期刊《先进材料》上的一篇论文中进行了报道。 该研究被认为是首次报道的微型机器人可以运输多达四种不同的药物,并按照可重新编程的顺序和剂量释放它们。 研究小组表示,与之前只能携带最多三种药物且无法按顺序释放的小型机器人相比,新开发的微型机器人具有精确的功能,有可能显着改善治疗效果,同时最大限度地减少副作用。 NTU 研究团队此前曾开发出磁控微型机器人,能够执行复杂的操作,比如在狭小空间“游动”和抓取微小物体。首席研究员、机械与航空航天工程学院 (MAE) 助理教授 Lum Guo Zhan 表示,在早期研究的基础上,研究团队受到了 20 世纪 60 年代电影《奇幻旅程》的启发,影片中,一艘潜艇上的船员被缩小到细胞大小,以修复受伤科学家大脑的损伤。“随着我们实验室的创新,科幻电影中的场景现在正越来越接近现实。与通过人体将药物精确输送到需要的地方相比,口服和注射等传统药物输送方法似乎效率较低,”Lum 助理教授说。
“在实验室的某些条件下,结构表面蛋白能够将自身转化为 VLP。它们可以在实验室中利用细菌作为微型工厂来刺激这种转化。第二步是接种抗原,即 COVID-19 中的刺突蛋白。这简化了整个过程,使其更加灵活,并降低了开发疫苗的成本,”他说。
