摘要。印刷电路板 (PCB) 是环氧树脂浸渍和固化的反编织玻璃纤维 (例如 FR4) 板,层压在薄铜板之间。PCB 的性质本质上是各向异性和不均匀的,但之前的 PCB 模态 FEM 假设了各向同性、各向异性 (横向各向同性和正交各向异性) 材料特性,并显示出与特定场景的测试数据有良好的相关性 [1-3]。本文详细介绍了一项研究计划的一部分,旨在更好地理解如何准确模拟 PCB 的动态行为。分析了材料各向异性的影响的新研究,特别是材料正交平面定义 (𝐸 ௫ 和 𝐸 ௬ ) 对特征频率的影响。使用 Steinberg 完善的理论和其他人的经验数据 [4, 5] 创建、验证和确认了 JEDEC PCB 的模态 FEM。使用参数模态 FEM 检查了 𝐸 ௫ 、𝐸 ௬ 和 𝐸 ௭ 对 PCB 特征频率的相对贡献,分析了材料各向同性和各向异性的作用。还分析了典型 JEDEC PCB 的横向各向同性材料特性的影响。此分析详细说明了准确建模 PCB 特征频率所需的网格密度。结果表明,𝐸 ௭ 增加 100% 只会导致特征频率差异 0.2%,而 𝐸 ௬ 增加 100% 会导致特征频率差异 1.2%。正交各向异性平面定义(交替使用 𝐸 ௫ 和 𝐸 ௬ )对 JEDEC PCB 的影响使特征频率发生了 7.95 % 的偏移。
摘要:桥梁是战略基础设施,在其一生中会降解。因此,结构性健康监测已成为该领域的重要工具,以推动维护活动。依赖有线传感器的常规振动监视系统对大量结构的连续监视项目提出了一些局限性。在这项工作中,为桥梁模态识别而开发了一个智能无线监视系统,目的是为该场中的有线传感器提供替代工具。设计的无线加速度计的主要特点是低成本,在结构上的易于安装以及使用能量收集技术赋予的长期自主权。为了评估其测量性性能,安装了一些原型用于在铁路桥上进行场测试,并获取了显着的数据。通过处理收集的数据,估计了桥梁的主要固有频率,并且它们的值与传统系统获得的参考文献非常吻合。对开发解决方案的评估为许多桥梁的仪器铺平了道路,目的是使用简单的诊断指标进行连续监测活动,例如时间频率的变化。
摘要成熟人类皮质的专业区域功能部分通过早期发展过程中的经验依赖性专业而出现。我们对婴儿大脑中功能专业化的现有理解是基于单一成像方式的证据,因此集中在神经或动态激活的空间或时间选择性的孤立估计上,从而产生了不完整的图像。我们推测,功能专业将由更广泛的机器生理反应中的更好协调的血液动力学和代谢变化为基础。为了使研究人员能够通过开发跟踪这一过程,我们开发了新的工具,可以同时测量清醒婴儿中协调的神经活动(EEG),代谢率和氧化血液供应(宽带近红外光谱)。在4至7个月大的婴儿中,我们使用这些新工具来表明,社会处理是由于在颞顶交界处的耦合激活中在空间和时间上特定的增加而促进了社会社交大脑的核心枢纽区域的耦合激活。在非社会处理期间,同一地区的耦合激活减少,表明对社会处理的特异性。耦合在高频脑活动(β和伽马)中最强,与更大的能量需求和高频脑活动的局部作用相一致。同时多模式神经措施的发展将使未来的研究人员能够开放新的远景,以了解大脑的功能专业化。
我们研究了从舌头的超声图像和嘴唇的视频图像中进行多说话人语音识别。我们在模态语音的图像数据上训练我们的系统,并在两种说话模式的匹配测试集上进行评估:无声语音和模态语音。我们观察到,从图像数据中进行的无声语音识别表现不如模态语音识别,这可能是因为训练和测试之间的说话模式不匹配。我们使用解决领域不匹配的技术来提高无声语音识别性能,例如 fMLLR 和无监督模型自适应。我们还从话语持续时间和发音空间大小方面分析了无声语音和模态语音的特性。为了估计发音空间,我们计算从超声舌头图像中提取的舌头样条的凸包。总体而言,我们观察到无声语音的持续时间比模态语音的持续时间长,并且无声语音比模态语音覆盖的发音空间小。尽管这两个特性在各种说话模式下都具有统计显著性,但它们与语音识别的单词错误率并不直接相关。索引词:无声语音界面、无声语音、超声舌成像、视频唇成像、发音语音识别
摘要。在许多工程应用中,结构的振动分析需要设置大量传感器。这些研究大多在后处理中进行,并基于线性模态分析。然而,许多研究的设备强调模态参数取决于振动水平非线性,并使用加速度计等传感器来修改设备的动态特性。这项工作提出了一种基于实时识别非线性参数(固有频率和阻尼)的模态测试的重大发展,这些参数以线性模态为基础进行跟踪。这种方法称为运动学-SAMI(用于多传感器同化模态识别),首先在已知非线性的数值情况下进行评估,其次在具有非接触式测量技术(高速高分辨率摄像机)的经典悬臂梁框架中进行评估。最后,讨论了该方法的效率和局限性。
摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
本文以 AIRBUS A350XWB MSN1 的地面振动测试为背景,该测试在首飞前不久进行。该测试由来自德国航空航天中心和法国国家航空航天研究所 (DLR-ONERA) 的跨国 GVT 团队在法国图卢兹的 AIRBUS 设施内进行,仅用了 9 个测量日。在测试期间,使用了 LMS Scadas III 数据采集系统,采集单元采用分布式架构,通过 300 米光纤电缆连接,以最大限度地缩短传感器电缆长度。总共记录了 530 个加速度信号、27 个力信号和 33 个其他信号。该结构通过 13 个电动振动器从 23 个位置受到激励,主要使用优化的扫频正弦信号,偶尔使用随机信号,获得超过 180 次激励运行。为了了解更多信息,还对一些特定模式应用了相位共振法 (PRM)。
8 MAC 分析 该系统的一个主要应用是能够比较和更新有限元模型 (FEM)。为此,可以通过通用文件格式数据传输将所有测量点的完整光谱数据文件导出到实验模态分析程序,在该程序中可以根据测量的传递函数计算出模态参数(固有模态形状、特征频率和模态阻尼)。在本例中,使用了 TechPassion 的模态分析程序 VMAP。它提供 Polytec 二进制文件格式的本地导入,而无需事先转换为通用文件格式。在 [5, 6] 中可以找到类似的示例。可以将模态形状和特征频率与从模拟计算出的值进行比较,并且可以将模态阻尼添加到 FEM。现在可以将 FEM 调整到真实结构,并可以使用 VMAP FE 模型更新工具得出改进的模型。
该系统的一个主要应用是能够比较和更新有限元模型 (FEM)。为此,可以通过通用文件格式数据传输将所有测量点的完整光谱数据文件导出到实验模态分析程序,其中可以根据测量的传递函数计算模态参数(自然模态形状、特征频率和模态阻尼)。在这种情况下,使用了 TechPassion 的模态分析程序 VMAP。它提供 Polytec 二进制文件格式的本地导入,而无需事先转换为通用文件格式。可以在 [5, 6] 中找到类似的例子。可以将模态形状和特征频率与从模拟计算出的值进行比较,并且可以将模态阻尼添加到 FEM。现在可以将 FEM 调整到真实结构,并使用 VMAP FE 模型更新工具得出改进的模型。
摘要:我们开发了一种底物,该基材可以实现高度敏感和空间均匀的表面增强拉曼散射(SERS)。该基材包括密集的金纳米颗粒(D-Aunps)/二氧化钛/AU膜(D-ATA)。D-ATA底物显示了AUNP和Fabry-pé腐烂纳米腔的局部表面等离子体共振(LSPR)之间的模态超肌耦合。d-ATA表现出近场强度的显着增强,与D-Aunp/ Tio 2底物相比,晶体紫(CV)的SERS信号增加了78倍。重要的是,可以获得高灵敏度和空间均匀的信号强度,而无需精确控制纳米级AUNP的形状和排列,从而实现了定量的SERS测量。此外,在超低吸附条件下(0.6 r6g分子/AUNP)在该基材上对若丹明6G(R6G)的SER测量显示出3%以内信号强度的空间变化。这些发现表明,在模态超肌耦合下的SERS信号源自具有量子相干性的多个等离激元颗粒。关键字:局部表面等离子体共振,模态超技术耦合,表面增强的拉曼散射,量子相干性,自组装